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Abstract

We present AnimateDiff-Lightning for lightning-fast
video generation. Our model uses progressive adversar-
ial diffusion distillation to achieve new state-of-the-art in
few-step video generation. We discuss our modifications to
adapt it for the video modality. Furthermore, we propose to
simultaneously distill the probability flow of multiple base
diffusion models, resulting in a single distilled motion mod-
ule with broader style compatibility. We are pleased to
release our distilled AnimateDiff-Lightning model for the
community’s use.

Model: https://huggingface.co/ByteDance/AnimateDiff-Lightning

1. Introduction

Video generative models are gaining great attention
lately. Text-to-video models [2–4, 6, 8, 30, 36, 44] allow the
creation of videos straight from ideation; image-to-video
models [2, 4, 6, 36] enable more fine-grained control over
content and composition; video-to-video models [4, 6] can
convert existing videos to different styles, such as anime or
cartoon. The advancement in video generation has enabled
brand-new creative possibilities.

Among all methods, AnimateDiff [6] is one of the most
popular video generation models. It takes a frozen im-
age generation model and injects learnable temporal mo-
tion modules into the network. This allows the model to
inherit the image priors and learn to produce temporally co-
herent frames from limited video datasets. Since the im-
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age model’s architecture and weights are unchanged, it can
be swapped with a wide range of stylized models post-
training to create amazing anime and cartoon videos, etc.
Additionally, AnimateDiff is compatible with image con-
trol modules, such as ControlNet [42], T2I-Adapter [22],
IP-Adapter [40], etc., which further enhance its versatility.

However, speed is one of the main hurdles preventing
video generation models from wider adoption. State-of-
the-art generative models are slow and computationally ex-
pansive due to the iterative diffusion process. This issue is
further worsened in video generation. For example, many
video stylization pipelines using AnimateDiff with Control-
Net and a stylized image model can take up to ten minutes
to process a ten-second video. Making the generation faster
while retaining its quality is the main focus of this work.

Diffusion distillation [11,13,17,18,20,21,28,29,31,32,
35, 41, 43] has been more widely researched in image gen-
eration. Recently, progressive adversarial diffusion distil-
lation [13] has achieved state-of-the-art results in few-step
image generation. In this paper, we apply it to video models
for the first time, demonstrating the applicability and superi-
ority of this method on the video modality. We will discuss
our designs and changes made specifically for video model
distillation.

In addition, we propose to simultaneously distill the
probability flow of multiple base diffusion models. Specif-
ically, we take special consideration into the fact that Ani-
mateDiff is widely used with different stylized base models.
However, all existing methods perform distillation only on
the default base model, and can only hope that the distilled
motion module will still work after swapping onto a new
base. In practice, we find the quality degrades as the infer-
ence step reduces. Therefore, we propose to explicitly and
simultaneously distill a shared motion module on different
base models. We find this approach not only improves qual-
ity on the selected base models, but also on unseen base
models.

Our proposed AnimateDiff-Lightning can generate bet-
ter quality videos in fewer inference steps, out-competing
the prior video distillation method AnimateLCM [35]. We
release our distilled AnimateDiff-Lightning model for the
community’s use.

2. Background

2.1. Diffusion Model

Diffusion models [9,33] are behind most state-of-the-art
video generation methods. The generation involves a prob-
ability flow [16,17,33] that gradually transports samples xt

from the noise distribution t = T to the data distribution
t = 0. A neural network f is learned to predict the gradient
at any location of this flow. Because the flow is curved and
complex, the generation must only take a small step along

the gradient at a time, repeatedly invoking expansive neural
network evaluations. Diffusion distillation trains the neu-
ral network to directly predict the next flow location farther
ahead, allowing traversing the flow with bigger strides and
fewer steps.

2.2. Progressive Adversarial Diffusion Distillation

Progressive adversarial diffusion distillation [13] pro-
poses to combine progressive distillation [28] and adversar-
ial loss [5]. Specifically, progressive distillation [28] trains
a student network to directly predict the next flow location
xt−ns from the current flow location xt as if the teacher
network has stepped through n steps of stride s. After the
student converges, it is used as the teacher and the process
repeats itself for further distillation:

xt−ns = EulerSolver(fteacher, xt, t, c, n, s) (1)
x̂t−ns = EulerSolver(fstudent, xt, t, c, 1, ns) (2)

Lmse = ∥x̂t−ns − xt−ns∥22 (3)

However, theoretical analysis [13] has shown that exact
matching with mean squared error (MSE) as in Equation (3)
is impossible due to reduced model capacity, so adversarial
loss is introduced to trade-off between quality and mode
coverage. The method proposes to first distill with discrim-
inator D conditioned on xt and caption c to enforce flow
trajectory preservation:

p = D(xt, xt−ns, t, t− ns, c) (4)
p̂ = D(xt, x̂t−ns, t, t− ns, c) (5)

Then, distill with discriminator D′ without the condition
on xt to relax the trajectory requirement to improve quality:

p = D′(xt−ns, t− ns, c) (6)
p̂ = D′(x̂t−ns, t− ns, c) (7)

The distillation trains the diffusion model and the dis-
criminator with non-saturated adversarial loss [5] in alter-
nating iterations:

LD = − log(p)− log(1− p̂) (8)
LG = − log(p̂) (9)

SDXL-Lightning [13] achieves new state-of-the-art in
one-step/few-step text-to-image generation with this distil-
lation method. Our work is the first to apply this method in
video diffusion distillation, demonstrating the applicability
and superiority of the method in other modalities.

2.3. Other Diffusion Distillation Methods

Diffusion distillation is mostly studied in image genera-
tion. Most notably, Latent Consistency Model (LCM) [20,
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21] applies consistency distillation [32] for latent image dif-
fusion models; InstaFlow [18] uses a technique called rec-
tified flow (RF) [17] to gradually make the flow straighter
as a way to reduce sampling steps; SDXL-Turbo [29] uses
adversarial loss with score distillation sampling (SDS) [24]
to push generation down to one step. SDXL-Lightning [13]
is the latest research in distillation and achieves even bet-
ter quality compared to previous methods with progressive
adversarial distillation.

Research on video diffusion distillation is very scarce.
AnimateLCM [35] is the only work on video diffusion dis-
tillation so far to the best of our knowledge. It follows
LCM [20, 21] to apply consistency distillation [32] on An-
imateDiff. AnimateLCM can generate great quality videos
with eight inference steps but starts to show artifacts with
four inference steps, and the results are blurry under four
inference steps.

2.4. Distillation as Pluggable Modules

LCM [21], AnimateLCM [35], and SDXL-Lightning
[13] have explored training the distillation as a pluggable
module. The module contains additional parameters on top
of the frozen base model, allowing the module to be trans-
planted onto other stylized base models post-training.

However, the distillation module is only trained on the
default base model and the whole approach depends on
the assumption that other stylized base models have simi-
lar weights. Empirically, we find the quality degrades as the
inference step reduces on unseen base models.

In this paper, we explore explicitly and simultaneously
distilling the distillation module on multiple base models
for the first time. This provides a quality guarantee on the
selected base models. We also find it improves compatibil-
ity on unseen base models.

3. Method

We propose to train a shared distilled motion module on
multiple base models simultaneously for AnimateDiff [6].
The resulting motion module has better few-step inference
compatibility with different base models.

3.1. Model and Data Preparation

Besides the default Stable Diffusion (SD) v1.5 base
model [26], we select multiple additional target base mod-
els based on their popularity. For realistic style, we select
RealisticVision v5.1 [56] and epiCRealism [49]. For anime
style, we select ToonYou Beta 6 [58], IMP v1.0 [51], and
Counterfeit v3.0 [46].

The existing video dataset WebVid-10M [1] only con-
tains realistic stock video footage. The samples are espe-
cially out-of-distribution when distilling the anime mod-
els. Therefore, we apply AnimateDiff on all the selected

base models to mass-generate data samples. Specifically,
we generate video clips using the prompts from WebVid-
10M [1]. We use DPM-Solver++ [19] with 32 steps and a
classifier-free guidance (CFG) scale of 7.5 without negative
prompts. All the clips are 16 frames and 512×512 resolu-
tion. In total, we have generated 1.75 million clips.

3.2. Cross-Model Distillation

The AnimateDiff model Fi is composed of the frozen
image base model fi and the shared motion module m,
where i denotes the index of the specific base model.

Fi := fi ◦m (10)

At distillation, we only update the weights of the mo-
tion module and keep the weights of the image base model
unchanged. We load different image base model fi on dif-
ferent GPU ranks and initialize the motion module m with
the same AnimateDiff v2 checkpoint [6]. The specific as-
signments are shown in Table 1.

This design allows the motion module to be simultane-
ously distilled on multiple base models. Spreading different
base models across GPUs eliminates the need for constant
swapping of the base models on each GPU. We modify the
PyTorch Distributed Data Parallel (DDP) framework [23]
to prevent synchronization of the frozen image base model
from erasing our model assignments. After the modifica-
tion, the gradients are automatically accumulated using the
existing distributed training mechanism to ensure optimiza-
tion toward accurate distillation on all base models.

We also assign different distillation datasets according
to the image base model. For distilling the Stable Diffusion
base model, we use the WebVid-10M dataset [1]. For dis-
tilling each realistic or anime model, we pool together all
the generated data of its kind to improve diversity. We also
employ random horizontal flips to double the sample count.

Rank Base Model Dataset

0 Stable Diffusion v1.5 [26] WebVid-10M [1]1 Stable Diffusion v1.5 [26]

2 RealisticVision v5.1 [56] Generated Realistic3 epiCRealism [49]

4 ToonYou Beta 6 [58]

Generated Anime5 ToonYou Beta 6 [58]
6 IMP v1.0 [51]
7 Counterfeit v3.0 [46]

Table 1. Model and dataset assignments across 8 GPU ranks in a
single machine. The same configuration is replicated to additional
machines.
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3.3. Flow-Conditional Video Discriminator

Progressive adversarial diffusion distillation [13] pro-
poses to use discriminator D to ensure that the student pre-
diction of xt−ns from xt given caption c is sharp and flow-
preserving. Since our distillation now involves multiple
flows of different base models, we must extend the discrim-
inator to be flow-conditional. Specifically, we provide the
corresponding base model index i to the discriminator. This
way the discriminator can learn and critique separate flow
trajectories for each base model:

D(xt, xt−ns, t, t− ns, c, i)

:= σ

(
head

(
d(xt−ns, t− ns, c, i), d(xt, t, c, i)

))
(11)

We follow prior works [13,15] to take the diffusion UNet
[27] encoder and midblock as the discriminator backbone d.
In our case, we use the AnimateDiff architecture [6], which
consists of the image base model initialized with SD v1.5
weights [26] and the motion module initialized with Ani-
mateDiff v2 weights [6]. We include flow condition i as a
new learnable embedding and add it to the time embedding.
The shared backbone processes d(xt−ns, t − ns, c, i) and
d(xt, t, c, i) independently. The resulting midblock features
are concatenated along the channel dimension before pass-
ing to a prediction head. The prediction head consists of
blocks of 3D convolution with a kernel size of 4 and a stride
of 2, group normalization [37], and SiLU activation [7, 25]
to further reduce the dimension to a single value. Finally,
the sigmoid function σ(·) clamps the value to [0, 1] range,
denoting the probability of the input xt−ns being generated
from the teacher as opposed to the student. The entire dis-
criminator, including the backbone, is trained.

Progressive adversarial diffusion distillation [13] also
proposes to further finetune the model without condition on
xt at each stage to relax the flow trajectory preservation re-
quirement and further improve the quality. But note that
despite the flow trajectory preservation is relaxed, we still
must enforce the student prediction to be within the distri-
bution of the target flow. Therefore, we also modify this
discriminator D′ to be conditional on flow i:

D′(xt−ns, t− ns, c, i)

:= σ

(
head

(
d(xt−ns, t− ns, c, i)

)) (12)

3.4. Distillation Procedure

We progressively distill the model in the following step
count order: 128 → 32 → 8 → 4 → 2. We use
mean squared error (MSE) and apply classifier-free guid-
ance (CFG) on 128 → 32 distillation. The CFG scale is set
to 7.5 and no negative prompts. We use adversarial loss for
the rest of the stages. Note that our data generation uses

DPM-Solver++ [19] for 32 steps. Since DPM-Solver++
produces better quality than Euler, we still decide to start
the distillation from 128 steps for extra quality.

The distillation is performed on 64 A100 GPUs. Each
GPU can only process a batch size of 1 due to the mem-
ory constraint, so we apply a gradient accumulation of 4 to
achieve a total batch size of 256. Other hyperparameters,
such as learning rate, etc., follow SDXL-Lightning [13] ex-
actly. We adopt the linear schedule [9] as used in the orig-
inal AnimateDiff but use pure noise at the last timestep as
model input during training following [13] to ensure zero
terminal SNR [12].

Unlike SDXL-Lightning [13], we cannot switch to x0-
prediction while keeping the base model frozen for one-step
generation, so we train the model in ϵ-prediction.

Compared to AnimateLCM [35], which first distills the
image base model as a LoRA module [10] on image datasets
and then distills the video motion module on limited video
datasets to combat data scarcity, our method distills the
whole AnimateDiff model as a whole. Furthermore, we find
the distillation can be trained on the motion module alone
for satisfactory quality and there is no need for an additional
LoRA module on the image base model.

4. Evaluation

4.1. Qualitative Evaluation

Figure 1 shows qualitative comparison of our model to
the original AnimateDiff [6] and AnimateLCM [35]. Our
method achieves better quality with 1-step, 2-step, and 4-
step inference compared to AnimateLCM. The difference is
particularly pronounced when using 1-step and 2-step infer-
ence as AnimateLCM fails to generate sharp details. Addi-
tionally, our method using cross-model distillation can bet-
ter retain the original style of the base model. AnimateLCM
sometimes over-exposes and differs from the base model’s
style and tone even when using 8-step inference.

Figure 1f shows the results of our model when applied to
an unseen base model: Mistoon Anime v1.0 [54]. The style
gradually deviates from the original style as the inference
step reduces, but note that our model still generates results
closer to the original compared to AnimateLCM in terms
of the overall anime style, clothing, and hair color of the
characters. More analysis on the effect of cross-model dis-
tillation is provided in Section 5.1. More analysis on unseen
models is provided in Section 5.2

The 1-step model produces heavy noise artifacts. This is
likely due to the numerical instability of the epsilon formu-
lation, which is also encountered by SDXL-Lightning [13].
For the 2-step model, we notice that it produces more pro-
nounced brightness flickers. Note that the flickers have ex-
isted since the original AnimateDiff model. We find the
4-step model strikes the balance between quality and speed.
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Original [6] Ours AnimateLCM [35]
CFG7.5 No CFG No CFG
32 Steps 8 Steps 4 Steps 2 Steps 1 Step 8 Steps 4 Step 2 Steps 1 Step

(a) epiCRealism [49]: A close-up of a man talking and laughing on New York subway. (Our method generates sharper details in 2 steps and 1 step.)

(b) RealisticVision v5.1 [56]: A man holding a black umbrella running in a rainy day. (Our method matches the original tone and style better.)

(c) epiCRealism [49]: Entering a big castle. (Our method generates sharper details in 2 steps and 1 step.)

Figure 1. Qualitative Comparison. We only show the first, middle, and last frames of the generated video clips in each column. Our model
generates better results using 1-step, 2-step, and 4-step inference. Additionally, our model can better retain the style of the original model.
This page focuses on realistic style generation. Please see the next page for anime-style generation.
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Original [6] Ours AnimateLCM [35]
CFG7.5 No CFG No CFG
32 Steps 8 Steps 4 Steps 2 Steps 1 Step 8 Steps 4 Step 2 Steps 1 Step

(d) IMP v1.0 [51]: A boy looking at the sky, firework in the background. (Our method matches the original tone and style better.)

(e) ToonYou Beta 6 [58]: A girl smiling. (Our method matches the original tone and style better.)

(f) Mistoon Anime [54]: A couple dancing at the beach. (On an unseen base model, our method matches the original style, clothing, and hair color better.)

Figure 1. Qualitative Comparison. Continuing from the last page, we show an anime-style generation comparison on this page. We also
try to apply our model on an unseen base model: Mistoon Anime [54] in Fig. 1f. Though there is style degradation as the inference step
reduces, our model produces more similar results compared to the original in terms of overall anime style, clothing, and hair color of the
characters.
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Original [6] Cross-Model Distillation Single-Model Distillation
32 Steps 8 Steps 4 Steps 2 Steps 8 Steps 4 Steps 2 Steps

(a) Stable Diffusion v1.5 [26]: An old man smiling.

(b) RealisticVision v5.1 [56]: A boy smiling.

(c) ToonYou Beta 6 [58]: A girl smiling.

Figure 2. Comparison between cross-model and single-model distillation. Single-model distillation is trained only on SD v1.5 [26] base
model with the WebVid-10M [1] dataset. Single-model distillation fails to retain quality on other base models. We show the first frame of
the generated video clips.

AbsoluteReality
v1.8.1 [45]

DreamShaper
v8 [47]

DynaVision
v2 [48]

Exquisite Details
Art [50]

MajicMix
Realistic v7 [52]

MajicMix
Reverie v1 [53]

RCNZ Cartoon
v2 [55]

ReV Animated
v1.2.2 [57]

(a) AnimateDiff [6] using 32 steps with Euler sampler.

(b) Our method using 4 steps.

(c) AnimateLCM [35] using 4 steps.

Figure 3. Distillation results on unseen base models. All the image base models here are unseen during the distillation of our model and
the AnimateLCM model [35]. Our results are better in detail and are closer to the original styles. We use different prompts that best match
the image base models’ specialty, but the same prompt and seed are used across model comparisons. We show the first frame of the
generated video clips.
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Zoom Pan Tilt Roll
In Out Left Right Up Down Left Right

Figure 4. Our model is compatible with Motion LoRA modules [6] for fine-grained motion control. Here is our 4-step model on ToonYou
[58] with prompt: “A girl smiling”. The first row is the starting frame and the second row is the final frame.

Figure 5. Text-to-video generation of different aspect ratios. Examples shown here are 2-step and 4-step models generating 1:2, 2:3, 3:2,
and 2:1 aspect ratios. We show a random frame from the generated video clips.

(a) 4 Steps, IMP v1.0 [51], DWPose [39] (b) 2 Steps, epiCRealism [49], HED [38], RobustVideoMatting [14]

Figure 6. Video-to-video generation with ControlNet [42]. The example videos are generated in 576× 1024 resolution directly using our
model with ControlNet [42]. More sophisticated pipelines, such as using super-resolution, can further enhance the quality.
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4.2. Quantitative Evaluation

Method Steps FVD ↓
RV [56] TY [58] DS [47] DV [48]

AnimateLCM

1 1423.18 1825.24 1393.10 1652.32
2 1041.61 917.61 1034.19 1045.49
4 1171.54 784.81 1175.06 1097.66
8 1300.41 804.21 1253.43 1115.95

Ours

1 1135.43 1037.85 974.75 1501.34
2 1024.13 801.04 918.74 1351.06
4 1010.30 708.55 908.01 1175.29
8 1058.58 690.65 865.29 979.94

Table 2. FVD computed against original AnimateDiff on differ-
ent image base models. RV: RealisticVision, TY: ToonYou, DS:
DreamShaper, DV: DynaVision.

Table 2 shows quantatitive comparison. First, we ran-
domly select 100 prompts from the WebVid-10M dataset
[1]. Then, we generate the clips using four different image
base models. We select RealisticVision [56] and ToonYou
[58] as seen realistic and anime style models, and select
DreamShaper [47] and DynaVision [48] as unseen realis-
tic and anime style models. Each prompt uses a random
seed but the same seed is used across models on the same
prompt. Finally, we compute FVD [34] against the origi-
nal AnimateDiff results generated using 32 Euler steps and
CFG 7.5 without negative prompts. Both ours and Ani-
mateLCM [35] do not use CFG. The metrics show that our
models have better FVD compared to AnimateLCM and
therefore produce results closer to the original AnimateDiff.

5. Ablation
5.1. Effects of Cross-Model Distillation

We conduct a comparison experiment to distill a model
only using Stable Diffusion v1.5 [26] as the image base
model on the WebVid-10M [1] dataset. This corresponds
to the regular single-model distillation paradigm.

Figure 2 shows that single-model distillation can only
keep the best quality on the default SD [26] base model.
The quality degrades after switching to RealisticVision [56]
which has a similar realistic style. The quality significantly
degrades after switching to ToonYou [58] which has a dras-
tically different anime style.

5.2. Effects on Unseen Base Models

We test our model on a wide variety of popular image
base models. These base models are unseen during the
distillation process. Figure 3 shows that our distilled mo-
tion module can generalize well to other unseen base mod-
els. Furthermore, our distilled model produces results with

sharper details and closer styles to the original model com-
pared to AnimateLCM [35].

5.3. Compatibility with Motion LoRAs

Figure 4 shows that our model is compatible with Mo-
tion LoRAs [6]. We have tested Motion LoRAs on all our
models and have found that they work in all step settings.
We apply Motion LoRAs with a strength of 0.8 to avoid
watermarks, an issue Motion LoRAs introduce. We find
Motion LoRAs enable fine-grained control of the camera
motion and they greatly enhance the amount of motion in
the generated videos.

5.4. Support for Different Aspect-Ratios

Figures 5 and 6 show that our model retains the ability
to generate videos of different aspect-ratios on both text-to-
video and video-to-video scenarios despite the distillation
is performed only in square aspect ratio. However, we find
that as the aspect ratio deviates more from the square, there
is a higher probability of generating bad cases. The distilla-
tion training can be done in multiple aspect ratios. We leave
this to future improvements.

5.5. Video-to-Video Generation with ControlNet

One of AnimateDiff’s most popular uses is video-to-
video stylization. Given a source video, ControlNet [42] is
applied to extract human movement, and then AnimateDiff
is used to generate the movement using different styles.

Figure 6 shows that our model is compatible with Con-
trolNet [42]. Here we only apply the basic setting, but a
more sophisticated pipeline, such as using super-resolution
and background replacement, can be additionally added.
To generate longer videos, the popular approach is context
overlapping, which overlaps the 16-frame context window
with previously generated clips. We have tested that our
models support generating longer videos with context over-
lapping.

6. Conclusion
We have presented AnimateDiff-Lightning, a lightning-

fast video generation model. In this paper, we have shown
that progressive adversarial diffusion distillation can be ap-
plied in the video modality. Our model achieves new state-
of-the-art in few-step video generation. Additionally, we
have proposed cross-model diffusion distillation to further
improve the distillation module’s ability to generalize to dif-
ferent stylized base models. We apply the cross-model dis-
tillation technique on AnimateDiff because it is most widely
used with different image base models. However, this tech-
nique can be generalized to create more universal distilla-
tion pluggable modules for all modalities. Lastly, we re-
lease our distilled AnimateDiff-Lightning models with the
hope of facilitating advancements in generative AI.
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