update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: vowelizer_1203_v2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# vowelizer_1203_v2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/canine-s](https://huggingface.co/google/canine-s) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0018
|
23 |
+
- Precision: 0.9989
|
24 |
+
- Recall: 0.9988
|
25 |
+
- F1: 0.9989
|
26 |
+
- Accuracy: 0.9995
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 20
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.1589 | 1.0 | 1933 | 0.1247 | 0.9263 | 0.8773 | 0.9011 | 0.9577 |
|
58 |
+
| 0.1227 | 2.0 | 3866 | 0.0937 | 0.9453 | 0.9110 | 0.9278 | 0.9676 |
|
59 |
+
| 0.1019 | 3.0 | 5799 | 0.0738 | 0.9589 | 0.9261 | 0.9422 | 0.9743 |
|
60 |
+
| 0.0868 | 4.0 | 7732 | 0.0595 | 0.9654 | 0.9530 | 0.9592 | 0.9792 |
|
61 |
+
| 0.0745 | 5.0 | 9665 | 0.0470 | 0.9741 | 0.9609 | 0.9675 | 0.9833 |
|
62 |
+
| 0.0638 | 6.0 | 11598 | 0.0364 | 0.9799 | 0.9728 | 0.9764 | 0.9873 |
|
63 |
+
| 0.0529 | 7.0 | 13531 | 0.0282 | 0.9853 | 0.9748 | 0.9800 | 0.9899 |
|
64 |
+
| 0.0473 | 8.0 | 15464 | 0.0218 | 0.9894 | 0.9838 | 0.9866 | 0.9923 |
|
65 |
+
| 0.0381 | 9.0 | 17397 | 0.0170 | 0.9909 | 0.9895 | 0.9902 | 0.9940 |
|
66 |
+
| 0.0325 | 10.0 | 19330 | 0.0128 | 0.9936 | 0.9921 | 0.9928 | 0.9956 |
|
67 |
+
| 0.0284 | 11.0 | 21263 | 0.0100 | 0.9950 | 0.9938 | 0.9944 | 0.9965 |
|
68 |
+
| 0.0256 | 12.0 | 23196 | 0.0079 | 0.9959 | 0.9949 | 0.9954 | 0.9972 |
|
69 |
+
| 0.0222 | 13.0 | 25129 | 0.0058 | 0.9969 | 0.9965 | 0.9967 | 0.9980 |
|
70 |
+
| 0.0196 | 14.0 | 27062 | 0.0048 | 0.9974 | 0.9973 | 0.9974 | 0.9984 |
|
71 |
+
| 0.016 | 15.0 | 28995 | 0.0036 | 0.9979 | 0.9974 | 0.9977 | 0.9988 |
|
72 |
+
| 0.0143 | 16.0 | 30928 | 0.0030 | 0.9983 | 0.9981 | 0.9982 | 0.9990 |
|
73 |
+
| 0.0134 | 17.0 | 32861 | 0.0025 | 0.9986 | 0.9984 | 0.9985 | 0.9992 |
|
74 |
+
| 0.0117 | 18.0 | 34794 | 0.0021 | 0.9987 | 0.9986 | 0.9987 | 0.9993 |
|
75 |
+
| 0.0102 | 19.0 | 36727 | 0.0019 | 0.9987 | 0.9987 | 0.9987 | 0.9994 |
|
76 |
+
| 0.0098 | 20.0 | 38660 | 0.0018 | 0.9989 | 0.9988 | 0.9989 | 0.9995 |
|
77 |
+
|
78 |
+
|
79 |
+
### Framework versions
|
80 |
+
|
81 |
+
- Transformers 4.28.0
|
82 |
+
- Pytorch 2.1.0+cu121
|
83 |
+
- Datasets 2.18.0
|
84 |
+
- Tokenizers 0.13.3
|