BritishWerewolf commited on
Commit
655e21b
·
1 Parent(s): 2c97a99

Add ONNX model (fp32).

Browse files
Files changed (4) hide show
  1. README.md +53 -0
  2. config.json +20 -0
  3. onnx/model.onnx +3 -0
  4. preprocessor_config.json +27 -0
README.md CHANGED
@@ -1,3 +1,56 @@
1
  ---
 
 
 
 
 
 
2
  license: apache-2.0
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ library_name: transformers
3
+ pipeline_tag: image-segmentation
4
+ tags:
5
+ - image-segmentation
6
+ - mask-generation
7
+ - transformers.js
8
  license: apache-2.0
9
+ language:
10
+ - en
11
  ---
12
+ # U-2-Net-Human-Seg
13
+
14
+ ## Model Description
15
+ U-2-Net-Human-Seg is a specialised version of the U-2-Net model designed specifically for human segmentation tasks. This model excels in distinguishing human figures from the background in images, making it particularly useful for applications such as background removal, virtual try-ons, and human-centric image editing. By leveraging a deep learning approach, U-2-Net-Human-Seg can accurately segment human subjects in various poses and environments, providing high-quality segmentation masks that can be utilized in different imaging tasks.
16
+
17
+ ## Usage
18
+ Perform mask generation with `BritishWerewolf/U-2-Net-Human-Seg`.
19
+
20
+ ### Example
21
+ ```javascript
22
+ import { AutoModel, AutoProcessor, RawImage } from '@huggingface/transformers';
23
+
24
+ const img_url = 'https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png';
25
+ const image = await RawImage.read(img_url);
26
+
27
+ const processor = await AutoProcessor.from_pretrained('BritishWerewolf/U-2-Net-Human-Seg');
28
+ const processed = await processor(image);
29
+
30
+ const model = await AutoModel.from_pretrained('BritishWerewolf/U-2-Net-Human-Seg', {
31
+ dtype: 'fp32',
32
+ });
33
+
34
+ const output = await model({ input: processed.pixel_values });
35
+ // {
36
+ // mask: Tensor {
37
+ // dims: [ 1, 320, 320 ],
38
+ // type: 'uint8',
39
+ // data: Uint8Array(102400) [ ... ],
40
+ // size: 102400
41
+ // }
42
+ // }
43
+ ```
44
+
45
+ ## Model Architecture
46
+ The U-2-Net-Human-Seg model is based on a simplified version of the original U-2-Net architecture, designed to be more lightweight while still achieving high performance in segmentation tasks. The model consists of several stages with down-sampling and up-sampling paths, using Residual U-blocks (RSU) for enhanced feature representation.
47
+
48
+ ### Inference
49
+ To use the model for inference, you can follow the example provided above. The `AutoProcessor` and `AutoModel` classes from the `transformers` library make it easy to load the model and processor.
50
+
51
+ ## Credits
52
+ * [`rembg`](https://github.com/danielgatis/rembg) for the ONNX model.
53
+ * The authors of the original U-2-Net model can be credited at https://github.com/xuebinqin/U-2-Net.
54
+
55
+ ## Licence
56
+ This model is licensed under the Apache License 2.0 to match the original U-2-Net model.
config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "u2net_human_seg",
3
+ "model_type": "u2net",
4
+ "architectures": [
5
+ "U2NetModel"
6
+ ],
7
+ "input_name": "input.1",
8
+ "input_shape": [1, 3, 320, 320],
9
+ "output_composite": "1959",
10
+ "output_names": [
11
+ "1959",
12
+ "1960",
13
+ "1961",
14
+ "1962",
15
+ "1963",
16
+ "1964",
17
+ "1965"
18
+ ],
19
+ "output_shape": [1, 320, 320]
20
+ }
onnx/model.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:309c8469258dda742793dce0ebea8e6dd393174f89934733ecc8b14c76f4ddd8
3
+ size 4574861
preprocessor_config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "processor_class": "U2NetProcessor",
3
+ "image_processor_type": "U2NetImageProcessor",
4
+ "do_convert_rgb": true,
5
+ "do_normalize": true,
6
+ "do_pad": true,
7
+ "do_rescale": true,
8
+ "do_resize": true,
9
+ "keep_aspect_ratio": true,
10
+ "image_mean": [
11
+ 0.485,
12
+ 0.456,
13
+ 0.406
14
+ ],
15
+ "image_std": [
16
+ 0.229,
17
+ 0.224,
18
+ 0.225
19
+ ],
20
+ "pad_size": {
21
+ "width": 320,
22
+ "height": 320
23
+ },
24
+ "size": {
25
+ "longest_edge": 320
26
+ }
27
+ }