ALIGN-Sim / Models /MultilingualTranslationModel.py
yzm0034's picture
Upload folder using huggingface_hub
4f08d2c verified
raw
history blame
5.23 kB
import torch
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
import os
from tqdm import tqdm
import pandas as pd
import time
import sys
from datasets import load_dataset
from src.utils import read_data
class NLLBTranslator:
def __init__(self, model_name="facebook/nllb-200-3.3B"):
"""
Initialize the NLLB model and tokenizer for translation
"""
self.device = "cuda" if torch.cuda.is_available() else "cpu"
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
self.model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(self.device)
def _get_nllb_code(self, language: str) -> str:
"""
Maps common language names to NLLB language codes.
Args:
language (str): Common language name (case-insensitive)
Returns:
str: NLLB language code or None if language not found
Examples:
>>> get_nllb_code("english")
'eng_Latn'
>>> get_nllb_code("Chinese")
'zho_Hans'
"""
language_mapping = {
# English variations
"english": "eng_Latn",
"eng": "eng_Latn",
"en": "eng_Latn",
# Hindi variations
"hindi": "hin_Deva",
"hi": "hin_Deva",
# French variations
"french": "fra_Latn",
"fr": "fra_Latn",
# Korean variations
"korean": "kor_Hang",
"ko": "kor_Hang",
# Spanish variations
"spanish": "spa_Latn",
"es": "spa_Latn",
# Chinese variations (defaulting to Simplified)
"chinese": "zho_Hans",
"chinese simplified": "zho_Hans",
"chinese traditional": "zho_Hant",
"mandarin": "zho_Hans",
"zh-cn": "zho_Hans",
# Japanese variations
"japanese": "jpn_Jpan",
"jpn": "jpn_Jpan",
"ja": "jpn_Jpan",
# German variations
"german": "deu_Latn",
"de": "deu_Latn"
}
# Convert input to lowercase for case-insensitive matching
normalized_input = language.lower().strip()
# Return the code if found, None otherwise
return language_mapping.get(normalized_input)
def add_language_code(self, name_code_dict, language, code):
# TODO: Add this fuctionality to _get_nllb_code
"""
Adds a language code to the dictionary if it is not already present.
Args:
name_code_dict (dict): Dictionary of language names to codes
language (str): Language name
code (str): Language code
Returns:
dict: Updated dictionary
"""
# Normalize the language name
normalized_language = language.lower().strip()
# Add the language code if not already present
if normalized_language not in name_code_dict:
name_code_dict[normalized_language] = code
return name_code_dict
def translate(self, text, source_lang="eng_Latn", target_lang="fra_Latn",batch_size=None):
"""
Translate text from source language to target language
Args:
text (str): Text to translate
source_lang (str): Source language code
target_lang (str): Target language code
Returns:
str: Translated text
"""
# Tokenize the input text
inputs = self.tokenizer(text, return_tensors="pt", padding=True).to(self.device)
# map language names to NLLB language codes
source_lang = self._get_nllb_code(source_lang)
target_lang = self._get_nllb_code(target_lang)
# Add the source language token
forced_bos_token_id = self.tokenizer.convert_tokens_to_ids(target_lang)
# Generate translation
translated_tokens = self.model.generate(
**inputs,
max_length=256,
num_beams=5,
temperature=0.5,
do_sample=True,
forced_bos_token_id=forced_bos_token_id,
)
# Decode the translation
if translated_tokens.shape[0] == 1: #single sentence
translation = self.tokenizer.decode(translated_tokens[0], skip_special_tokens=True)
else:
translation = self.tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)
return translation
def main():
# Set up the model and tokenizer
print("Loading model and tokenizer...")
translator = NLLBTranslator()
# Example translations
texts = [
"Hello, how are you?",
"This is a test of the NLLB translation model.",
"Machine learning is fascinating."
]
print("\nTranslating texts from English to French:")
trt=translation = translator.translate(texts,target_lang="fr",batch_size=2)
if __name__ == "__main__":
main()