File size: 5,144 Bytes
4f08d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6453ac2
 
4f08d2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import torch
from transformers import AutoModel, AutoModelForCausalLM, AutoTokenizer, AutoConfig
from typing import Union, List
from pathlib import Path
from typing import Union, List
import dotenv
import os
import sys
sys.path.insert(0,"./")
from src.utils import full_path
from tqdm import tqdm


dotenv.load_dotenv(os.getenv("./models/.env"))
hf = os.getenv("huggingface_token")

def check_model_in_cache(model_name: str):
    if model_name in ["LLaMA3","llama3"]:
        return str(full_path("/data/shared/llama3-8b/Meta-Llama-3-8B_shard_size_1GB"))
    
    if model_name in ["Mistral","mistral"]:
        return str(full_path("/data/shared/mistral-7b-v03/Mistral-7B-v0.3_shard_size_1GB"))
    
    if model_name in ["olmo","OLMo"]:
        return str(full_path("/data/shared/olmo/OLMo-7B_shard_size_2GB"))

    raise ValueError(f"Model '{model_name}' not found in local cache.")

def mean_pooling(model_output, attention_mask):
    """
    mean_pooling _summary_

    Args:
        model_output (_type_): _description_
        attention_mask (_type_): _description_

    Returns:
        _type_: _description_
    """
    token_embeddings = model_output #First element of model_output contains all token embeddings
    input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
    return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

class LLMEmbeddings:
    def __init__(self, model_name: str, device: torch.device = None):
        """
        Initializes any Hugging Face LLM.
        
        Args:
            model_dir (str): Path or Hugging Face repo ID for the model.
            device (torch.device): Device to load the model on (CPU/GPU).
        """
        self.device = device or torch.device("cuda" if torch.cuda.is_available() else "cpu")
        
        # Load model from cache
        try:
            model_dir = check_model_in_cache(model_name)
        except:
            model_dir = model_name 

        # Load tokenizer
        self.tokenizer = AutoTokenizer.from_pretrained(model_dir, trust_remote_code=True)
        
        # Load model configuration to determine model type
        config = AutoConfig.from_pretrained(model_dir, trust_remote_code=True)
        self.model_type = config.architectures[0] if config.architectures else ""

        # Automatically choose between AutoModelForCausalLM and AutoModel
        if "CausalLM" in self.model_type:
            self.model = AutoModelForCausalLM.from_pretrained(
                model_dir, trust_remote_code=True, torch_dtype=torch.float16
            ).to(self.device)
        else:
            self.model = AutoModel.from_pretrained(
                model_dir, trust_remote_code=True, torch_dtype=torch.float16
            ).to(self.device)

        # Ensure padding token is set (fixes issues in tokenization)
        if self.tokenizer.pad_token is None:
            self.tokenizer.pad_token = self.tokenizer.eos_token
        
        self.model.eval()

    def encode(self, text: Union[str, List[str]]):
        """Encodes input sentences into embeddings."""
        inputs = self.tokenizer(
            text, return_tensors="pt", padding=True, truncation=True, max_length=1024, return_token_type_ids=False
        ).to(self.device)

        with torch.no_grad():
            outputs = self.model(**inputs, output_hidden_states=True, use_cache=False)
       
        embeddings = mean_pooling(outputs.hidden_states[-1], inputs["attention_mask"]).squeeze()
        return embeddings
    
    def encode_batch(self, text: Union[str, List[str]], batch_size: int = 32):
        """Encodes input sentences into embeddings using batching."""
        # If a single string is provided, wrap it in a list.
        if isinstance(text, str):
            text = [text]

        embeddings_list = []
        # Process the text in batches
        for i in tqdm(range(0, len(text), batch_size), desc="Processing Batches"):
            batch_text = text[i:i+batch_size]
            inputs = self.tokenizer(
                batch_text,
                return_tensors="pt",
                padding=True,
                truncation=True,
                max_length=1024,
                return_token_type_ids=False
            ).to(self.device)

            with torch.no_grad():
                outputs = self.model(**inputs, output_hidden_states=True, use_cache=False)

            batch_embeddings = mean_pooling(outputs.hidden_states[-1], inputs["attention_mask"]).squeeze()
            embeddings_list.append(batch_embeddings)

        # Concatenate embeddings from all batches along the batch dimension.
        embeddings = torch.cat(embeddings_list, dim=0)
        return embeddings

    

if __name__ == "__main__":
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    # Load any Hugging Face LLM (e.g., LLaMA, Mistral, Falcon, GPT)
    
    llm = LLMEmbeddings(model_name="llama3", device=device)

    # Encode text into embeddings
    embedding = llm.encode("Hugging Face models are powerful!")
    print(embedding.shape)
    print("Done!!")