"""PyTorch OpenAI GPT-2 model modified to support parallel-gpt2, code copied from Huggingface"""


import warnings
from typing import Optional, Tuple, Union

import torch
import torch.utils.checkpoint
from torch import nn

from transformers.modeling_outputs import (
    BaseModelOutputWithPastAndCrossAttentions,
    CausalLMOutputWithCrossAttentions
)
from transformers.generation import GenerationMixin
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
from src.models.modeling_gpt2 import GPT2PreTrainedModel, GPT2Block
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa

class ParallelGPT2Config(GPT2Config):
    model_type = "parallel-gpt2"
    architectures = ["ParallelGPT2LMHeadModel"]

class ParallelGPT2PretrainedModel(GPT2PreTrainedModel):
    config_class = ParallelGPT2Config

class ParallelGPT2Model(ParallelGPT2PretrainedModel):
    _supports_param_buffer_assignment = False

    def __init__(self, config):
        super().__init__(config)

        self.embed_dim = config.hidden_size

        self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
        self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)

        self.drop = nn.Dropout(config.embd_pdrop)
        if config.num_hidden_layers % 2 != 0:
            raise ValueError("Number of hidden layers must be even")
        self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
        self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
        self.config.bottleneck_method = getattr(config, "bottleneck_method", "mean")
        if self.config.bottleneck_method=="concat":
            self.bottleneck = nn.Linear(2*self.embed_dim, self.embed_dim)

        # Model parallel
        self.model_parallel = False
        self.device_map = None
        self.gradient_checkpointing = False
        self._attn_implementation = config._attn_implementation

        # Initialize weights and apply final processing
        self.post_init()


    def parallelize(self, device_map=None):
        # Check validity of device_map
        warnings.warn(
            "`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
            " model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
            " ...}",
            FutureWarning,
        )
        self.device_map = (
            get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
        )
        assert_device_map(self.device_map, len(self.h))
        self.model_parallel = True
        self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
        self.last_device = "cuda:" + str(max(self.device_map.keys()))
        self.wte = self.wte.to(self.first_device)
        self.wpe = self.wpe.to(self.first_device)
        # Load onto devices
        for k, v in self.device_map.items():
            for block in v:
                cuda_device = "cuda:" + str(k)
                self.h[block] = self.h[block].to(cuda_device)
        # ln_f to last
        self.ln_f = self.ln_f.to(self.last_device)

    def deparallelize(self):
        self.model_parallel = False
        self.device_map = None
        self.first_device = "cpu"
        self.last_device = "cpu"
        self.wte = self.wte.to("cpu")
        self.wpe = self.wpe.to("cpu")
        for index in range(len(self.h)):
            self.h[index] = self.h[index].to("cpu")
        self.ln_f = self.ln_f.to("cpu")
        torch.cuda.empty_cache()

    def get_input_embeddings(self):
        return self.wte

    def set_input_embeddings(self, new_embeddings):
        self.wte = new_embeddings

    def _prune_heads(self, heads_to_prune):
        """
        Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)


    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)

        # Attention mask.
        _use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
        attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
        if self._attn_implementation == "flash_attention_2":
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif _use_sdpa:
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask=attention_mask,
                input_shape=(batch_size, input_shape[-1]),
                inputs_embeds=inputs_embeds,
                past_key_values_length=past_length,
            )
        else:
            if attention_mask is not None:
                # We create a 3D attention mask from a 2D tensor mask.
                # Sizes are [batch_size, 1, 1, to_seq_length]
                # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
                # this attention mask is more simple than the triangular masking of causal attention
                # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
                attention_mask = attention_mask[:, None, None, :]

                # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
                # masked positions, this operation will create a tensor which is 0.0 for
                # positions we want to attend and the dtype's smallest value for masked positions.
                # Since we are adding it to the raw scores before the softmax, this is
                # effectively the same as removing these entirely.
                attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
                attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.add_cross_attention and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            if _use_sdpa:
                encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
                )
            elif not self._attn_implementation == "flash_attention_2":
                encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        presents = () if use_cache else None
        all_self_attentions_left = () if output_attentions else None
        all_self_attentions_right = () if output_attentions else None
        all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        for i in range(0, len(self.h), 2):
            block_left, layer_past_left = self.h[i], past_key_values[i]
            block_right, layer_past_right = self.h[i+1], past_key_values[i+1]
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)

            if self.gradient_checkpointing and self.training:
                outputs_left = self._gradient_checkpointing_func(
                    block_left.__call__,
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                    use_cache,
                    output_attentions,
                )
                outputs_right = self._gradient_checkpointing_func(
                    block_right.__call__,
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i+1],
                    encoder_hidden_states,
                    encoder_attention_mask,
                    use_cache,
                    output_attentions,
                )
                # outputs_right = outputs_left
            else:
                outputs_left = block_left(
                    hidden_states,
                    layer_past=layer_past_left,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )
                outputs_right = block_right(
                    hidden_states,
                    layer_past=layer_past_right,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i+1],
                    encoder_hidden_states=encoder_hidden_states,
                    encoder_attention_mask=encoder_attention_mask,
                    use_cache=use_cache,
                    output_attentions=output_attentions,
                )
                # outputs_right = outputs_left
            if self.config.bottleneck_method=="concat":
                hidden_states = torch.cat((outputs_left[0], outputs_right[0]), dim=-1)
                hidden_states = self.bottleneck(hidden_states)
            elif self.config.bottleneck_method=="add":  
                hidden_states = (outputs_left[0] + outputs_right[0]) ## taking add
            elif self.config.bottleneck_method=="mean":
                hidden_states = (outputs_left[0] + outputs_right[0]) / 2 ## taking mean
            if use_cache is True:
                presents = presents + (outputs_left[1], outputs_right[1])

            if output_attentions:
                all_self_attentions_left = all_self_attentions_left + (outputs_left[2 if use_cache else 1],)
                all_self_attentions_right = all_self_attentions_right + (outputs_right[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    all_cross_attentions_left = all_cross_attentions_left + (outputs_left[3 if use_cache else 2],)
                    all_cross_attentions_right = all_cross_attentions_right + (outputs_right[3 if use_cache else 2],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, all_self_attentions_left, all_cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=all_self_attentions_left,
            cross_attentions=all_cross_attentions,
        )



    def forward_test(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
    ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
        use_cache = use_cache if use_cache is not None else self.config.use_cache
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
            input_shape = input_ids.size()
            input_ids = input_ids.view(-1, input_shape[-1])
            batch_size = input_ids.shape[0]
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
            batch_size = inputs_embeds.shape[0]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, input_shape[-1])

        if past_key_values is None:
            past_length = 0
            past_key_values = tuple([None] * len(self.h))
        else:
            past_length = past_key_values[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0)

        if inputs_embeds is None:
            inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)

        # Attention mask.
        _use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
        attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
        if self._attn_implementation == "flash_attention_2":
            attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
        elif _use_sdpa:
            attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
                attention_mask=attention_mask,
                input_shape=(batch_size, input_shape[-1]),
                inputs_embeds=inputs_embeds,
                past_key_values_length=past_length,
            )
        else:
            if attention_mask is not None:
                # We create a 3D attention mask from a 2D tensor mask.
                # Sizes are [batch_size, 1, 1, to_seq_length]
                # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
                # this attention mask is more simple than the triangular masking of causal attention
                # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
                attention_mask = attention_mask[:, None, None, :]

                # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
                # masked positions, this operation will create a tensor which is 0.0 for
                # positions we want to attend and the dtype's smallest value for masked positions.
                # Since we are adding it to the raw scores before the softmax, this is
                # effectively the same as removing these entirely.
                attention_mask = attention_mask.to(dtype=self.dtype)  # fp16 compatibility
                attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min

        # If a 2D or 3D attention mask is provided for the cross-attention
        # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
        if self.config.add_cross_attention and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
            if encoder_attention_mask is None:
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
            if _use_sdpa:
                encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
                    mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
                )
            elif not self._attn_implementation == "flash_attention_2":
                encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
        else:
            encoder_attention_mask = None

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        head_mask = self.get_head_mask(head_mask, self.config.n_layer)

        if token_type_ids is not None:
            token_type_embeds = self.wte(token_type_ids)
            hidden_states = hidden_states + token_type_embeds

        hidden_states = self.drop(hidden_states)

        output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)

        if self.gradient_checkpointing and self.training:
            if use_cache:
                logger.warning_once(
                    "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
                )
                use_cache = False

        presents = () if use_cache else None
        self_attentions = () if output_attentions else None
        cross_attentions = () if output_attentions and self.config.add_cross_attention else None
        all_hidden_states = () if output_hidden_states else None
        for i in range(0, len(self.h), 2):
            block_left, layer_past_left = self.h[i], past_key_values[i]
            block_right, layer_past_right = self.h[i+1], past_key_values[i+1]
            # Model parallel
            if self.model_parallel:
                torch.cuda.set_device(hidden_states.device)
                # Ensure layer_past is on same device as hidden_states (might not be correct)
                if layer_past is not None:
                    layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
                # Ensure that attention_mask is always on the same device as hidden_states
                if attention_mask is not None:
                    attention_mask = attention_mask.to(hidden_states.device)
                if isinstance(head_mask, torch.Tensor):
                    head_mask = head_mask.to(hidden_states.device)
            if output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states,)
            import copy
            avg_block = copy.deepcopy(block_left)
            state_left = block_left.state_dict()
            state_right = block_right.state_dict()
            new_state = {k: torch.min(state_left[k], state_right[k]) for k in state_left}
            # new_state = {k: (state_left[k] + state_right[k]) for k in state_left}
            avg_block.load_state_dict(new_state)

            if self.gradient_checkpointing and self.training:
                outputs = self._gradient_checkpointing_func(
                    avg_block.__call__,
                    hidden_states,
                    None,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                    use_cache,
                    output_attentions,
                )
            else:
                outputs = avg_block(
                    hidden_states,
                    layer_past=layer_past_left,
                    attention_mask=attention_mask,
                    head_mask=head_mask[i],
                    encoder_hidden_states=encoder_hidden_states,
                     encoder_attention_mask=encoder_attention_mask,
                     use_cache=use_cache,
                     output_attentions=output_attentions,
                 )

                # outputs_right = outputs_left
            if self.config.bottleneck_method=="concat":
                hidden_states = torch.cat((outputs[0], outputs[0]), dim=-1)
                hidden_states = self.bottleneck(hidden_states)
            elif self.config.bottleneck_method=="add":  
                hidden_states = (outputs[0] + outputs[0]) ## taking add
            elif self.config.bottleneck_method=="mean":
                hidden_states = (outputs[0] + outputs[0]) / 2 ## taking mean
            if use_cache is True:
                presents = presents + (outputs[1],)

            if output_attentions:
                self_attentions = self_attentions + (outputs[2 if use_cache else 1],)
                if self.config.add_cross_attention:
                    cross_attentions = cross_attentions + (outputs[3 if use_cache else 2],)

            # Model Parallel: If it's the last layer for that device, put things on the next device
            if self.model_parallel:
                for k, v in self.device_map.items():
                    if i == v[-1] and "cuda:" + str(k) != self.last_device:
                        hidden_states = hidden_states.to("cuda:" + str(k + 1))

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(output_shape)
        # Add last hidden state
        if output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        if not return_dict:
            return tuple(
                v
                for v in [hidden_states, presents, all_hidden_states, self_attentions, cross_attentions]
                if v is not None
            )

        return BaseModelOutputWithPastAndCrossAttentions(
            last_hidden_state=hidden_states,
            past_key_values=presents,
            hidden_states=all_hidden_states,
            attentions=self_attentions,
            cross_attentions=cross_attentions,
        )



class ParallelGPT2LMHeadModel(ParallelGPT2PretrainedModel, GenerationMixin):
    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config):
        super().__init__(config)
        self.transformer = ParallelGPT2Model(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        # Model parallel
        self.model_parallel = False
        self.device_map = None

        # Initialize weights and apply final processing
        self.post_init()

    def parallelize(self, device_map=None):
        warnings.warn(
            "`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
            " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
            " `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
            " 0, 'transformer.h.1': 1, ...}",
            FutureWarning,
        )
        self.device_map = (
            get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
            if device_map is None
            else device_map
        )
        assert_device_map(self.device_map, len(self.transformer.h))
        self.transformer.parallelize(self.device_map)
        self.lm_head = self.lm_head.to(self.transformer.first_device)
        self.model_parallel = True

    def deparallelize(self):
        self.transformer.deparallelize()
        self.transformer = self.transformer.to("cpu")
        self.lm_head = self.lm_head.to("cpu")
        self.model_parallel = False
        torch.cuda.empty_cache()

    def get_output_embeddings(self):
        return self.lm_head

    def set_output_embeddings(self, new_embeddings):
        self.lm_head = new_embeddings

    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        token_type_ids: Optional[torch.LongTensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        output_attentions: Optional[bool] = None,
        output_hidden_states: Optional[bool] = None,
        return_dict: Optional[bool] = None,
        **kwargs,
    ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
            `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
            are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
        """
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        transformer_outputs = self.transformer(
            input_ids,
            past_key_values=past_key_values,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        hidden_states = transformer_outputs[0]

        # Set device for model parallelism
        if self.model_parallel:
            torch.cuda.set_device(self.transformer.first_device)
            hidden_states = hidden_states.to(self.lm_head.weight.device)

        lm_logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            # Flatten the tokens
            loss = self.loss_function(
                lm_logits,
                labels,
                vocab_size=self.config.vocab_size,
                **kwargs,
            )

        if not return_dict:
            output = (lm_logits,) + transformer_outputs[1:]
            return ((loss,) + output) if loss is not None else output

        return CausalLMOutputWithCrossAttentions(
            loss=loss,
            logits=lm_logits,
            past_key_values=transformer_outputs.past_key_values,
            hidden_states=transformer_outputs.hidden_states,
            attentions=transformer_outputs.attentions,
            cross_attentions=transformer_outputs.cross_attentions,
        )

    @staticmethod
    def _reorder_cache(
        past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
    ) -> Tuple[Tuple[torch.Tensor]]:
        """
        This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
        [`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
        beam_idx at every generation step.
        """
        return tuple(
            tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
            for layer_past in past_key_values
        )



from transformers import AutoConfig, AutoModel
AutoConfig.register("parallel-gpt2", ParallelGPT2Config)
AutoModel.register(ParallelGPT2Config, ParallelGPT2LMHeadModel)

__all__ = [
    "ParallelGPT2LMHeadModel",
    "ParallelGPT2Model",
    "ParallelGPT2Config",
]


if __name__  == "__main__":
    cg = ParallelGPT2Config.from_pretrained("gpt2-medium", architectures=["ParallelGPT2LMHeadModel"])
    model = ParallelGPT2LMHeadModel(cg)
    from src.utils.model_utlis import print_trainable_parameters
    print_trainable_parameters(model)
    model(torch.randint(0, 10000, (1, 100)))
    print()