--- library_name: transformers tags: - generated_from_trainer metrics: - accuracy - bleu model-index: - name: parallel-mean-bottleneck-gpt2-medium-wikitext results: [] --- # parallel-mean-bottleneck-gpt2-medium-wikitext This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 3.1864 - Accuracy: 0.4195 - Perplexity: 24.2005 - Bleu: 0.1476 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu | |:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:| | 6.0443 | 0.2806 | 500 | 5.9164 | 0.1901 | 371.0844 | 0.0350 | | 5.0429 | 0.5612 | 1000 | 4.8947 | 0.2638 | 133.5839 | 0.0647 | | 4.3531 | 0.8418 | 1500 | 4.2426 | 0.3176 | 69.5891 | 0.0829 | | 3.9503 | 1.1223 | 2000 | 3.8874 | 0.3517 | 48.7842 | 0.1050 | | 3.7613 | 1.4029 | 2500 | 3.7124 | 0.3672 | 40.9504 | 0.1211 | | 3.6548 | 1.6835 | 3000 | 3.5911 | 0.3780 | 36.2753 | 0.1308 | | 3.5531 | 1.9641 | 3500 | 3.5068 | 0.3860 | 33.3428 | 0.1340 | | 3.4344 | 2.2447 | 4000 | 3.4411 | 0.3920 | 31.2224 | 0.1356 | | 3.3743 | 2.5253 | 4500 | 3.3875 | 0.3972 | 29.5917 | 0.1389 | | 3.3443 | 2.8058 | 5000 | 3.3429 | 0.4016 | 28.3017 | 0.1373 | | 3.225 | 3.0864 | 5500 | 3.3080 | 0.4055 | 27.3310 | 0.1419 | | 3.2185 | 3.3670 | 6000 | 3.2781 | 0.4090 | 26.5258 | 0.1463 | | 3.1972 | 3.6476 | 6500 | 3.2500 | 0.4121 | 25.7899 | 0.1453 | | 3.1719 | 3.9282 | 7000 | 3.2268 | 0.4144 | 25.1990 | 0.1465 | | 3.1052 | 4.2088 | 7500 | 3.2109 | 0.4162 | 24.8018 | 0.1472 | | 3.0672 | 4.4893 | 8000 | 3.1978 | 0.4179 | 24.4788 | 0.1469 | | 3.0773 | 4.7699 | 8500 | 3.1864 | 0.4195 | 24.2005 | 0.1476 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.6.0+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0