File size: 4,405 Bytes
9b295f1
 
 
 
092b6c5
 
 
9b295f1
 
 
 
 
 
 
 
 
 
 
092b6c5
8f4638b
092b6c5
8f4638b
092b6c5
9b295f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5404364
 
9b295f1
 
 
 
 
 
 
 
8f4638b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b295f1
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
---
library_name: transformers
tags:
- generated_from_trainer
metrics:
- accuracy
- bleu
model-index:
- name: duo-predict-gpt2-medium-wikitext
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# duo-predict-gpt2-medium-wikitext

This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2546
- Accuracy: 0.0073
- Perplexity: 9.5311
- Bleu: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5

### Training results

| Training Loss | Epoch  | Step  | Validation Loss | Accuracy | Perplexity | Bleu |
|:-------------:|:------:|:-----:|:---------------:|:--------:|:----------:|:----:|
| 7.6654        | 0.1403 | 500   | 3.7315          | 0.0073   | 41.7396    | 1.0  |
| 7.0276        | 0.2807 | 1000  | 3.4735          | 0.0073   | 32.2490    | 1.0  |
| 6.4629        | 0.4210 | 1500  | 3.1863          | 0.0073   | 24.1987    | 1.0  |
| 5.9671        | 0.5613 | 2000  | 2.9542          | 0.0073   | 19.1873    | 1.0  |
| 5.6969        | 0.7017 | 2500  | 2.8233          | 0.0073   | 16.8331    | 1.0  |
| 5.5077        | 0.8420 | 3000  | 2.7351          | 0.0073   | 15.4112    | 1.0  |
| 5.3536        | 0.9823 | 3500  | 2.6607          | 0.0073   | 14.3059    | 1.0  |
| 5.2099        | 1.1226 | 4000  | 2.6000          | 0.0073   | 13.4641    | 1.0  |
| 5.1158        | 1.2630 | 4500  | 2.5493          | 0.0073   | 12.7980    | 1.0  |
| 5.0453        | 1.4033 | 5000  | 2.5125          | 0.0073   | 12.3362    | 1.0  |
| 4.955         | 1.5436 | 5500  | 2.4806          | 0.0073   | 11.9489    | 1.0  |
| 4.9157        | 1.6840 | 6000  | 2.4537          | 0.0073   | 11.6310    | 1.0  |
| 4.8756        | 1.8243 | 6500  | 2.4300          | 0.0073   | 11.3584    | 1.0  |
| 4.844         | 1.9646 | 7000  | 2.4100          | 0.0073   | 11.1342    | 1.0  |
| 4.7136        | 2.1050 | 7500  | 2.3948          | 0.0073   | 10.9657    | 1.0  |
| 4.6911        | 2.2453 | 8000  | 2.3805          | 0.0073   | 10.8105    | 1.0  |
| 4.6741        | 2.3856 | 8500  | 2.3668          | 0.0073   | 10.6637    | 1.0  |
| 4.6485        | 2.5260 | 9000  | 2.3538          | 0.0073   | 10.5257    | 1.0  |
| 4.623         | 2.6663 | 9500  | 2.3416          | 0.0073   | 10.3976    | 1.0  |
| 4.6016        | 2.8066 | 10000 | 2.3303          | 0.0073   | 10.2806    | 1.0  |
| 4.5823        | 2.9470 | 10500 | 2.3202          | 0.0073   | 10.1776    | 1.0  |
| 4.4802        | 3.0873 | 11000 | 2.3143          | 0.0073   | 10.1182    | 1.0  |
| 4.4671        | 3.2276 | 11500 | 2.3073          | 0.0073   | 10.0469    | 1.0  |
| 4.4557        | 3.3679 | 12000 | 2.3006          | 0.0073   | 9.9800     | 1.0  |
| 4.4437        | 3.5083 | 12500 | 2.2928          | 0.0073   | 9.9023     | 1.0  |
| 4.4402        | 3.6486 | 13000 | 2.2862          | 0.0073   | 9.8375     | 1.0  |
| 4.4482        | 3.7889 | 13500 | 2.2800          | 0.0073   | 9.7763     | 1.0  |
| 4.4279        | 3.9293 | 14000 | 2.2752          | 0.0073   | 9.7303     | 1.0  |
| 4.3188        | 4.0696 | 14500 | 2.2730          | 0.0073   | 9.7087     | 1.0  |
| 4.3193        | 4.2099 | 15000 | 2.2691          | 0.0073   | 9.6704     | 1.0  |
| 4.3158        | 4.3503 | 15500 | 2.2652          | 0.0073   | 9.6329     | 1.0  |
| 4.3196        | 4.4906 | 16000 | 2.2619          | 0.0073   | 9.6012     | 1.0  |
| 4.2946        | 4.6309 | 16500 | 2.2589          | 0.0073   | 9.5722     | 1.0  |
| 4.3078        | 4.7713 | 17000 | 2.2564          | 0.0073   | 9.5487     | 1.0  |
| 4.2974        | 4.9116 | 17500 | 2.2546          | 0.0073   | 9.5311     | 1.0  |


### Framework versions

- Transformers 4.49.0
- Pytorch 2.6.0+cu124
- Datasets 3.3.2
- Tokenizers 0.21.0