Model save
Browse files- README.md +79 -0
- generation_config.json +7 -0
- modeling_dd_gpt2.py +1109 -0
README.md
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
- bleu
|
8 |
+
model-index:
|
9 |
+
- name: dd-gpt2-medium-wikitext
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# dd-gpt2-medium-wikitext
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on an unknown dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 3.3729
|
21 |
+
- Accuracy: 0.4006
|
22 |
+
- Perplexity: 29.1627
|
23 |
+
- Bleu: 0.1356
|
24 |
+
|
25 |
+
## Model description
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Intended uses & limitations
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training and evaluation data
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training procedure
|
38 |
+
|
39 |
+
### Training hyperparameters
|
40 |
+
|
41 |
+
The following hyperparameters were used during training:
|
42 |
+
- learning_rate: 0.0001
|
43 |
+
- train_batch_size: 64
|
44 |
+
- eval_batch_size: 64
|
45 |
+
- seed: 42
|
46 |
+
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_ratio: 0.1
|
49 |
+
- num_epochs: 5
|
50 |
+
|
51 |
+
### Training results
|
52 |
+
|
53 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Perplexity | Bleu |
|
54 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:----------:|:------:|
|
55 |
+
| 6.3499 | 0.2806 | 500 | 6.2328 | 0.1688 | 509.1785 | 0.0261 |
|
56 |
+
| 5.4979 | 0.5612 | 1000 | 5.3734 | 0.2228 | 215.6041 | 0.0506 |
|
57 |
+
| 4.8996 | 0.8418 | 1500 | 4.7975 | 0.2650 | 121.2067 | 0.0669 |
|
58 |
+
| 4.5102 | 1.1223 | 2000 | 4.4042 | 0.2992 | 81.7968 | 0.0791 |
|
59 |
+
| 4.2029 | 1.4029 | 2500 | 4.1110 | 0.3301 | 61.0070 | 0.0887 |
|
60 |
+
| 4.0332 | 1.6835 | 3000 | 3.9383 | 0.3457 | 51.3319 | 0.0996 |
|
61 |
+
| 3.8911 | 1.9641 | 3500 | 3.8146 | 0.3575 | 45.3566 | 0.1107 |
|
62 |
+
| 3.7698 | 2.2447 | 4000 | 3.7189 | 0.3663 | 41.2194 | 0.1154 |
|
63 |
+
| 3.6812 | 2.5253 | 4500 | 3.6449 | 0.3729 | 38.2808 | 0.1225 |
|
64 |
+
| 3.63 | 2.8058 | 5000 | 3.5815 | 0.3790 | 35.9274 | 0.1216 |
|
65 |
+
| 3.5287 | 3.0864 | 5500 | 3.5309 | 0.3840 | 34.1532 | 0.1261 |
|
66 |
+
| 3.5032 | 3.3670 | 6000 | 3.4913 | 0.3883 | 32.8286 | 0.1302 |
|
67 |
+
| 3.4684 | 3.6476 | 6500 | 3.4542 | 0.3917 | 31.6327 | 0.1304 |
|
68 |
+
| 3.4365 | 3.9282 | 7000 | 3.4250 | 0.3949 | 30.7240 | 0.1303 |
|
69 |
+
| 3.3894 | 4.2088 | 7500 | 3.4020 | 0.3973 | 30.0227 | 0.1327 |
|
70 |
+
| 3.3446 | 4.4893 | 8000 | 3.3850 | 0.3992 | 29.5189 | 0.1336 |
|
71 |
+
| 3.3532 | 4.7699 | 8500 | 3.3729 | 0.4006 | 29.1627 | 0.1356 |
|
72 |
+
|
73 |
+
|
74 |
+
### Framework versions
|
75 |
+
|
76 |
+
- Transformers 4.49.0
|
77 |
+
- Pytorch 2.6.0+cu124
|
78 |
+
- Datasets 3.3.2
|
79 |
+
- Tokenizers 0.21.0
|
generation_config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 50256,
|
4 |
+
"eos_token_id": 50256,
|
5 |
+
"transformers_version": "4.49.0",
|
6 |
+
"use_cache": false
|
7 |
+
}
|
modeling_dd_gpt2.py
ADDED
@@ -0,0 +1,1109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
"""PyTorch OpenAI GPT-2 model, code copied from Huggingface"""
|
3 |
+
|
4 |
+
import math
|
5 |
+
import os
|
6 |
+
import warnings
|
7 |
+
from dataclasses import dataclass
|
8 |
+
from typing import Callable, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import torch
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from torch import nn
|
13 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
14 |
+
|
15 |
+
from transformers.activations import ACT2FN
|
16 |
+
from transformers.generation import GenerationMixin
|
17 |
+
from transformers.modeling_attn_mask_utils import _prepare_4d_attention_mask_for_sdpa, _prepare_4d_causal_attention_mask_for_sdpa
|
18 |
+
from transformers.modeling_outputs import (
|
19 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
20 |
+
CausalLMOutputWithCrossAttentions,
|
21 |
+
QuestionAnsweringModelOutput,
|
22 |
+
SequenceClassifierOutputWithPast,
|
23 |
+
TokenClassifierOutput,
|
24 |
+
)
|
25 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel, SequenceSummary
|
26 |
+
from transformers.pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_conv1d_layer
|
27 |
+
from transformers.utils import (
|
28 |
+
ModelOutput,
|
29 |
+
add_code_sample_docstrings,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
logging,
|
33 |
+
replace_return_docstrings,
|
34 |
+
)
|
35 |
+
from transformers.utils.model_parallel_utils import assert_device_map, get_device_map
|
36 |
+
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
|
37 |
+
from src.models.modeling_gpt2 import GPT2PreTrainedModel, GPT2Block
|
38 |
+
|
39 |
+
logger = logging.get_logger(__name__)
|
40 |
+
|
41 |
+
class DDGPT2Config(GPT2Config):
|
42 |
+
model_type = "dd-gpt2"
|
43 |
+
architectures = ["DDGPT2LMHeadModel"]
|
44 |
+
|
45 |
+
class DDGPT2PretrainedModel(GPT2PreTrainedModel):
|
46 |
+
config_class = DDGPT2Config
|
47 |
+
|
48 |
+
|
49 |
+
def load_tf_weights_in_gpt2(model, config, gpt2_checkpoint_path):
|
50 |
+
"""Load tf checkpoints in a pytorch model"""
|
51 |
+
try:
|
52 |
+
import re
|
53 |
+
|
54 |
+
import tensorflow as tf
|
55 |
+
except ImportError:
|
56 |
+
logger.error(
|
57 |
+
"Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
|
58 |
+
"https://www.tensorflow.org/install/ for installation instructions."
|
59 |
+
)
|
60 |
+
raise
|
61 |
+
tf_path = os.path.abspath(gpt2_checkpoint_path)
|
62 |
+
logger.info(f"Converting TensorFlow checkpoint from {tf_path}")
|
63 |
+
# Load weights from TF model
|
64 |
+
init_vars = tf.train.list_variables(tf_path)
|
65 |
+
names = []
|
66 |
+
arrays = []
|
67 |
+
for name, shape in init_vars:
|
68 |
+
logger.info(f"Loading TF weight {name} with shape {shape}")
|
69 |
+
array = tf.train.load_variable(tf_path, name)
|
70 |
+
names.append(name)
|
71 |
+
arrays.append(array.squeeze())
|
72 |
+
|
73 |
+
for name, array in zip(names, arrays):
|
74 |
+
name = name[6:] # skip "model/"
|
75 |
+
name = name.split("/")
|
76 |
+
pointer = model
|
77 |
+
for m_name in name:
|
78 |
+
if re.fullmatch(r"[A-Za-z]+\d+", m_name):
|
79 |
+
scope_names = re.split(r"(\d+)", m_name)
|
80 |
+
else:
|
81 |
+
scope_names = [m_name]
|
82 |
+
if scope_names[0] == "w" or scope_names[0] == "g":
|
83 |
+
pointer = getattr(pointer, "weight")
|
84 |
+
elif scope_names[0] == "b":
|
85 |
+
pointer = getattr(pointer, "bias")
|
86 |
+
elif scope_names[0] == "wpe" or scope_names[0] == "wte":
|
87 |
+
pointer = getattr(pointer, scope_names[0])
|
88 |
+
pointer = getattr(pointer, "weight")
|
89 |
+
else:
|
90 |
+
pointer = getattr(pointer, scope_names[0])
|
91 |
+
if len(scope_names) >= 2:
|
92 |
+
num = int(scope_names[1])
|
93 |
+
pointer = pointer[num]
|
94 |
+
try:
|
95 |
+
if pointer.shape != array.shape:
|
96 |
+
raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
|
97 |
+
except ValueError as e:
|
98 |
+
e.args += (pointer.shape, array.shape)
|
99 |
+
raise
|
100 |
+
logger.info(f"Initialize PyTorch weight {name}")
|
101 |
+
pointer.data = torch.from_numpy(array)
|
102 |
+
return model
|
103 |
+
|
104 |
+
|
105 |
+
def eager_attention_forward(module, query, key, value, attention_mask, head_mask=None, **kwargs):
|
106 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
107 |
+
|
108 |
+
if module.scale_attn_weights:
|
109 |
+
attn_weights = attn_weights / torch.full(
|
110 |
+
[], value.size(-1) ** 0.5, dtype=attn_weights.dtype, device=attn_weights.device
|
111 |
+
)
|
112 |
+
|
113 |
+
# Layer-wise attention scaling
|
114 |
+
if module.scale_attn_by_inverse_layer_idx:
|
115 |
+
attn_weights = attn_weights / float(module.layer_idx + 1)
|
116 |
+
|
117 |
+
if not module.is_cross_attention:
|
118 |
+
# if only "normal" attention layer implements causal mask
|
119 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
120 |
+
causal_mask = module.bias[:, :, key_length - query_length : key_length, :key_length]
|
121 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
122 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
123 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
124 |
+
mask_value = torch.full([], mask_value, dtype=attn_weights.dtype, device=attn_weights.device)
|
125 |
+
attn_weights = torch.where(causal_mask, attn_weights.to(attn_weights.dtype), mask_value)
|
126 |
+
|
127 |
+
if attention_mask is not None:
|
128 |
+
# Apply the attention mask
|
129 |
+
attn_weights = attn_weights + attention_mask
|
130 |
+
|
131 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
132 |
+
|
133 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op otherwise
|
134 |
+
attn_weights = attn_weights.type(value.dtype)
|
135 |
+
attn_weights = module.attn_dropout(attn_weights)
|
136 |
+
|
137 |
+
# Mask heads if we want to
|
138 |
+
if head_mask is not None:
|
139 |
+
attn_weights = attn_weights * head_mask
|
140 |
+
|
141 |
+
attn_output = torch.matmul(attn_weights, value)
|
142 |
+
attn_output = attn_output.transpose(1, 2)
|
143 |
+
|
144 |
+
return attn_output, attn_weights
|
145 |
+
|
146 |
+
|
147 |
+
class GPT2Attention(nn.Module):
|
148 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
149 |
+
super().__init__()
|
150 |
+
self.config = config
|
151 |
+
max_positions = config.max_position_embeddings
|
152 |
+
self.register_buffer(
|
153 |
+
"bias",
|
154 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
155 |
+
1, 1, max_positions, max_positions
|
156 |
+
),
|
157 |
+
persistent=False,
|
158 |
+
)
|
159 |
+
self.register_buffer("masked_bias", torch.tensor(-1e4), persistent=False)
|
160 |
+
|
161 |
+
self.embed_dim = config.hidden_size
|
162 |
+
self.num_heads = config.num_attention_heads
|
163 |
+
self.head_dim = self.embed_dim // self.num_heads
|
164 |
+
self.split_size = self.embed_dim
|
165 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
166 |
+
raise ValueError(
|
167 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
168 |
+
f" {self.num_heads})."
|
169 |
+
)
|
170 |
+
|
171 |
+
self.scale_attn_weights = config.scale_attn_weights
|
172 |
+
self.is_cross_attention = is_cross_attention
|
173 |
+
|
174 |
+
# Layer-wise attention scaling, reordering, and upcasting
|
175 |
+
self.scale_attn_by_inverse_layer_idx = config.scale_attn_by_inverse_layer_idx
|
176 |
+
self.layer_idx = layer_idx
|
177 |
+
self.reorder_and_upcast_attn = config.reorder_and_upcast_attn
|
178 |
+
|
179 |
+
if self.is_cross_attention:
|
180 |
+
self.c_attn = Conv1D(2 * self.embed_dim, self.embed_dim)
|
181 |
+
self.q_attn = Conv1D(self.embed_dim, self.embed_dim)
|
182 |
+
else:
|
183 |
+
self.c_attn = Conv1D(3 * self.embed_dim, self.embed_dim)
|
184 |
+
self.c_proj = Conv1D(self.embed_dim, self.embed_dim)
|
185 |
+
|
186 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
187 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
188 |
+
self.is_causal = True
|
189 |
+
|
190 |
+
self.pruned_heads = set()
|
191 |
+
|
192 |
+
def prune_heads(self, heads):
|
193 |
+
if len(heads) == 0:
|
194 |
+
return
|
195 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, self.head_dim, self.pruned_heads)
|
196 |
+
index_attn = torch.cat([index, index + self.split_size, index + (2 * self.split_size)])
|
197 |
+
|
198 |
+
# Prune conv1d layers
|
199 |
+
self.c_attn = prune_conv1d_layer(self.c_attn, index_attn, dim=1)
|
200 |
+
self.c_proj = prune_conv1d_layer(self.c_proj, index, dim=0)
|
201 |
+
|
202 |
+
# Update hyper params
|
203 |
+
self.split_size = (self.split_size // self.num_heads) * (self.num_heads - len(heads))
|
204 |
+
self.num_heads = self.num_heads - len(heads)
|
205 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
206 |
+
|
207 |
+
def _upcast_and_reordered_attn(self, query, key, value, attention_mask=None, head_mask=None):
|
208 |
+
# Use `torch.baddbmm` (a bit more efficient w/ alpha param for scaling -- from Megatron-LM)
|
209 |
+
bsz, num_heads, q_seq_len, dk = query.size()
|
210 |
+
_, _, k_seq_len, _ = key.size()
|
211 |
+
|
212 |
+
# Preallocate attn_weights for `baddbmm`
|
213 |
+
attn_weights = torch.empty(bsz * num_heads, q_seq_len, k_seq_len, dtype=torch.float32, device=query.device)
|
214 |
+
|
215 |
+
# Compute Scale Factor
|
216 |
+
scale_factor = 1.0
|
217 |
+
if self.scale_attn_weights:
|
218 |
+
scale_factor /= float(value.size(-1)) ** 0.5
|
219 |
+
|
220 |
+
if self.scale_attn_by_inverse_layer_idx:
|
221 |
+
scale_factor /= float(self.layer_idx + 1)
|
222 |
+
|
223 |
+
# Upcast (turn off autocast) and reorder (Scale K by 1 / root(dk))
|
224 |
+
with torch.amp.autocast(query.device.type, enabled=False):
|
225 |
+
q, k = query.reshape(-1, q_seq_len, dk), key.transpose(-1, -2).reshape(-1, dk, k_seq_len)
|
226 |
+
attn_weights = torch.baddbmm(attn_weights, q.float(), k.float(), beta=0, alpha=scale_factor)
|
227 |
+
attn_weights = attn_weights.reshape(bsz, num_heads, q_seq_len, k_seq_len)
|
228 |
+
|
229 |
+
if not self.is_cross_attention:
|
230 |
+
# if only "normal" attention layer implements causal mask
|
231 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
232 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
233 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
234 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
235 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
236 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
237 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
238 |
+
|
239 |
+
if attention_mask is not None:
|
240 |
+
# Apply the attention mask
|
241 |
+
attn_weights = attn_weights + attention_mask
|
242 |
+
|
243 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
244 |
+
|
245 |
+
# Downcast (if necessary) back to V's dtype (if in mixed-precision) -- No-Op if otherwise
|
246 |
+
if attn_weights.dtype != torch.float32:
|
247 |
+
raise RuntimeError("Error with upcasting, attn_weights does not have dtype torch.float32")
|
248 |
+
attn_weights = attn_weights.type(value.dtype)
|
249 |
+
attn_weights = self.attn_dropout(attn_weights)
|
250 |
+
|
251 |
+
# Mask heads if we want to
|
252 |
+
if head_mask is not None:
|
253 |
+
attn_weights = attn_weights * head_mask
|
254 |
+
|
255 |
+
attn_output = torch.matmul(attn_weights, value)
|
256 |
+
attn_output = attn_output.transpose(1, 2)
|
257 |
+
|
258 |
+
return attn_output, attn_weights
|
259 |
+
|
260 |
+
def forward(
|
261 |
+
self,
|
262 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
263 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
264 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
265 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
266 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
267 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
268 |
+
use_cache: Optional[bool] = False,
|
269 |
+
output_attentions: Optional[bool] = False,
|
270 |
+
**kwargs,
|
271 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
272 |
+
if encoder_hidden_states is not None:
|
273 |
+
if not hasattr(self, "q_attn"):
|
274 |
+
raise ValueError(
|
275 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
276 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
277 |
+
)
|
278 |
+
|
279 |
+
query_states = self.q_attn(hidden_states)
|
280 |
+
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
281 |
+
attention_mask = encoder_attention_mask
|
282 |
+
else:
|
283 |
+
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
284 |
+
|
285 |
+
shape_q = (*query_states.shape[:-1], -1, self.head_dim)
|
286 |
+
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
|
287 |
+
|
288 |
+
query_states = query_states.view(shape_q).transpose(1, 2)
|
289 |
+
key_states = key_states.view(shape_kv).transpose(1, 2)
|
290 |
+
value_states = value_states.view(shape_kv).transpose(1, 2)
|
291 |
+
|
292 |
+
if layer_past is not None:
|
293 |
+
past_key, past_value = layer_past
|
294 |
+
key_states = torch.cat((past_key, key_states), dim=-2)
|
295 |
+
value_states = torch.cat((past_value, value_states), dim=-2)
|
296 |
+
|
297 |
+
if use_cache is True:
|
298 |
+
present = (key_states, value_states)
|
299 |
+
else:
|
300 |
+
present = None
|
301 |
+
|
302 |
+
is_cross_attention = encoder_hidden_states is not None
|
303 |
+
is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention
|
304 |
+
|
305 |
+
using_eager = self.config._attn_implementation == "eager"
|
306 |
+
attention_interface: Callable = eager_attention_forward
|
307 |
+
if self.config._attn_implementation != "eager":
|
308 |
+
if self.config._attn_implementation == "sdpa" and (output_attentions or head_mask is not None):
|
309 |
+
using_eager = True
|
310 |
+
logger.warning_once(
|
311 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
312 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
313 |
+
)
|
314 |
+
else:
|
315 |
+
# Attention functions are consistent with previous equivalent attention classes, however they do not support some options
|
316 |
+
# (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but
|
317 |
+
# not necessarily to eager (if mentionned options are provided).
|
318 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
319 |
+
|
320 |
+
if using_eager and self.reorder_and_upcast_attn:
|
321 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
322 |
+
query_states, key_states, value_states, attention_mask, head_mask
|
323 |
+
)
|
324 |
+
else:
|
325 |
+
attn_output, attn_weights = attention_interface(
|
326 |
+
self,
|
327 |
+
query_states,
|
328 |
+
key_states,
|
329 |
+
value_states,
|
330 |
+
attention_mask,
|
331 |
+
head_mask=head_mask,
|
332 |
+
dropout=self.attn_dropout.p if self.training else 0.0,
|
333 |
+
is_causal=is_causal,
|
334 |
+
**kwargs,
|
335 |
+
)
|
336 |
+
|
337 |
+
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
|
338 |
+
attn_output = self.c_proj(attn_output)
|
339 |
+
attn_output = self.resid_dropout(attn_output)
|
340 |
+
|
341 |
+
outputs = (attn_output, present)
|
342 |
+
if output_attentions:
|
343 |
+
outputs += (attn_weights,)
|
344 |
+
|
345 |
+
return outputs # a, present, (attentions)
|
346 |
+
|
347 |
+
class GPT2AttentionWithDD(GPT2Attention):
|
348 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
349 |
+
super().__init__(config, is_cross_attention, layer_idx)
|
350 |
+
if config.apply_drift:
|
351 |
+
self.drift_param = nn.Parameter(torch.randn(
|
352 |
+
config.num_attention_heads, self.head_dim))
|
353 |
+
if config.baseline_each_head:
|
354 |
+
self.baseline = nn.Parameter(torch.randn(config.num_attention_heads, self.head_dim, dtype=torch.float32) * 1e-3)
|
355 |
+
if config.apply_diffusion:
|
356 |
+
self.diffusion_param = nn.Parameter(torch.randn(
|
357 |
+
config.num_attention_heads, self.head_dim))
|
358 |
+
|
359 |
+
def apply_diffusion(self, attn_output):
|
360 |
+
diffusion_component = self.diffusion_param.unsqueeze(0).unsqueeze(1)
|
361 |
+
# Create a noise term with the same shape as attn_output
|
362 |
+
# If deterministic, set noise to zero; else, use random noise
|
363 |
+
noise = torch.zeros_like(attn_output) if not self.training else torch.randn_like(attn_output)
|
364 |
+
attn_output = attn_output + diffusion_component * noise
|
365 |
+
return attn_output
|
366 |
+
|
367 |
+
def gpt_forward_without_cproj(
|
368 |
+
self,
|
369 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
370 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
371 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
372 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
373 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
374 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
375 |
+
use_cache: Optional[bool] = False,
|
376 |
+
output_attentions: Optional[bool] = False,
|
377 |
+
**kwargs,
|
378 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
379 |
+
if encoder_hidden_states is not None:
|
380 |
+
if not hasattr(self, "q_attn"):
|
381 |
+
raise ValueError(
|
382 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
383 |
+
"Please make sure to instantiate class with `GPT2Attention(..., is_cross_attention=True)`."
|
384 |
+
)
|
385 |
+
|
386 |
+
query_states = self.q_attn(hidden_states)
|
387 |
+
key_states, value_states = self.c_attn(encoder_hidden_states).split(self.split_size, dim=2)
|
388 |
+
attention_mask = encoder_attention_mask
|
389 |
+
else:
|
390 |
+
query_states, key_states, value_states = self.c_attn(hidden_states).split(self.split_size, dim=2)
|
391 |
+
|
392 |
+
shape_q = (*query_states.shape[:-1], -1, self.head_dim)
|
393 |
+
shape_kv = (*key_states.shape[:-1], -1, self.head_dim)
|
394 |
+
|
395 |
+
query_states = query_states.view(shape_q).transpose(1, 2)
|
396 |
+
key_states = key_states.view(shape_kv).transpose(1, 2)
|
397 |
+
value_states = value_states.view(shape_kv).transpose(1, 2)
|
398 |
+
|
399 |
+
if layer_past is not None:
|
400 |
+
past_key, past_value = layer_past
|
401 |
+
key_states = torch.cat((past_key, key_states), dim=-2)
|
402 |
+
value_states = torch.cat((past_value, value_states), dim=-2)
|
403 |
+
|
404 |
+
if use_cache is True:
|
405 |
+
present = (key_states, value_states)
|
406 |
+
else:
|
407 |
+
present = None
|
408 |
+
|
409 |
+
is_cross_attention = encoder_hidden_states is not None
|
410 |
+
is_causal = attention_mask is None and query_states.shape[-2] > 1 and not is_cross_attention
|
411 |
+
|
412 |
+
using_eager = self.config._attn_implementation == "eager"
|
413 |
+
attention_interface: Callable = eager_attention_forward
|
414 |
+
if self.config._attn_implementation != "eager":
|
415 |
+
if self.config._attn_implementation == "sdpa" and (output_attentions or head_mask is not None):
|
416 |
+
using_eager = True
|
417 |
+
logger.warning_once(
|
418 |
+
"`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to "
|
419 |
+
'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
# Attention functions are consistent with previous equivalent attention classes, however they do not support some options
|
423 |
+
# (e.g. layer scaling, head mask) that eager supports. These implementations are thus equivalent to previous code, but
|
424 |
+
# not necessarily to eager (if mentionned options are provided).
|
425 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
426 |
+
|
427 |
+
if using_eager and self.reorder_and_upcast_attn:
|
428 |
+
attn_output, attn_weights = self._upcast_and_reordered_attn(
|
429 |
+
query_states, key_states, value_states, attention_mask, head_mask
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
attn_output, attn_weights = attention_interface(
|
433 |
+
self,
|
434 |
+
query_states,
|
435 |
+
key_states,
|
436 |
+
value_states,
|
437 |
+
attention_mask,
|
438 |
+
head_mask=head_mask,
|
439 |
+
dropout=self.attn_dropout.p if self.training else 0.0,
|
440 |
+
is_causal=is_causal,
|
441 |
+
**kwargs,
|
442 |
+
)
|
443 |
+
|
444 |
+
# attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
|
445 |
+
|
446 |
+
outputs = (attn_output, present)
|
447 |
+
if output_attentions:
|
448 |
+
outputs += (attn_weights,)
|
449 |
+
|
450 |
+
return outputs # a, present, (attentions)
|
451 |
+
|
452 |
+
|
453 |
+
def apply_drift(self, attn_output):
|
454 |
+
drift_component = torch.sigmoid(self.drift_param.unsqueeze(0).unsqueeze(1))
|
455 |
+
if self.config.baseline_each_head:
|
456 |
+
attn_output = attn_output + drift_component * \
|
457 |
+
(attn_output - self.baseline.unsqueeze(0).unsqueeze(1))
|
458 |
+
else:
|
459 |
+
attn_output = attn_output + drift_component * attn_output
|
460 |
+
return attn_output
|
461 |
+
|
462 |
+
def forward(self, hidden_states, layer_past=None, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, use_cache=False, output_attentions=False, **kwargs):
|
463 |
+
gpt_attention_output = self.gpt_forward_without_cproj(
|
464 |
+
hidden_states, layer_past, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, use_cache, output_attentions, **kwargs
|
465 |
+
)
|
466 |
+
if len(gpt_attention_output) == 3:
|
467 |
+
attn_output, present, attn_weights = gpt_attention_output
|
468 |
+
else:
|
469 |
+
attn_output, present = gpt_attention_output
|
470 |
+
if self.config.apply_drift:
|
471 |
+
attn_output = self.apply_drift(attn_output)
|
472 |
+
if self.config.apply_diffusion:
|
473 |
+
attn_output = self.apply_diffusion(attn_output)
|
474 |
+
|
475 |
+
attn_output = attn_output.reshape(*attn_output.shape[:-2], -1).contiguous()
|
476 |
+
attn_output = self.c_proj(attn_output)
|
477 |
+
attn_output = self.resid_dropout(attn_output)
|
478 |
+
|
479 |
+
if output_attentions:
|
480 |
+
return attn_output, present, attn_weights
|
481 |
+
return attn_output, present
|
482 |
+
|
483 |
+
|
484 |
+
|
485 |
+
class GPT2MLP(nn.Module):
|
486 |
+
def __init__(self, intermediate_size, config):
|
487 |
+
super().__init__()
|
488 |
+
embed_dim = config.hidden_size
|
489 |
+
self.c_fc = Conv1D(intermediate_size, embed_dim)
|
490 |
+
self.c_proj = Conv1D(embed_dim, intermediate_size)
|
491 |
+
self.act = ACT2FN[config.activation_function]
|
492 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
493 |
+
|
494 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
495 |
+
hidden_states = self.c_fc(hidden_states)
|
496 |
+
hidden_states = self.act(hidden_states)
|
497 |
+
hidden_states = self.c_proj(hidden_states)
|
498 |
+
hidden_states = self.dropout(hidden_states)
|
499 |
+
return hidden_states
|
500 |
+
|
501 |
+
|
502 |
+
class GPT2Block(nn.Module):
|
503 |
+
def __init__(self, config, layer_idx=None):
|
504 |
+
super().__init__()
|
505 |
+
hidden_size = config.hidden_size
|
506 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
507 |
+
|
508 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
509 |
+
if config.apply_drift or config.apply_diffusion:
|
510 |
+
self.attn = GPT2AttentionWithDD(config=config, layer_idx=layer_idx)
|
511 |
+
else:
|
512 |
+
self.attn = GPT2Attention(config=config, layer_idx=layer_idx)
|
513 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
514 |
+
|
515 |
+
if config.add_cross_attention:
|
516 |
+
self.crossattention = GPT2Attention(config=config, is_cross_attention=True, layer_idx=layer_idx)
|
517 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
518 |
+
|
519 |
+
self.mlp = GPT2MLP(inner_dim, config)
|
520 |
+
|
521 |
+
def forward(
|
522 |
+
self,
|
523 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
524 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
525 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
526 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
527 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
528 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
529 |
+
use_cache: Optional[bool] = False,
|
530 |
+
output_attentions: Optional[bool] = False,
|
531 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
532 |
+
residual = hidden_states
|
533 |
+
hidden_states = self.ln_1(hidden_states)
|
534 |
+
attn_outputs = self.attn(
|
535 |
+
hidden_states,
|
536 |
+
layer_past=layer_past,
|
537 |
+
attention_mask=attention_mask,
|
538 |
+
head_mask=head_mask,
|
539 |
+
use_cache=use_cache,
|
540 |
+
output_attentions=output_attentions,
|
541 |
+
)
|
542 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
543 |
+
outputs = attn_outputs[1:]
|
544 |
+
# residual connection
|
545 |
+
hidden_states = attn_output + residual
|
546 |
+
|
547 |
+
if encoder_hidden_states is not None:
|
548 |
+
# add one self-attention block for cross-attention
|
549 |
+
if not hasattr(self, "crossattention"):
|
550 |
+
raise ValueError(
|
551 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
552 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
553 |
+
)
|
554 |
+
residual = hidden_states
|
555 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
556 |
+
cross_attn_outputs = self.crossattention(
|
557 |
+
hidden_states,
|
558 |
+
attention_mask=attention_mask,
|
559 |
+
head_mask=head_mask,
|
560 |
+
encoder_hidden_states=encoder_hidden_states,
|
561 |
+
encoder_attention_mask=encoder_attention_mask,
|
562 |
+
output_attentions=output_attentions,
|
563 |
+
)
|
564 |
+
attn_output = cross_attn_outputs[0]
|
565 |
+
# residual connection
|
566 |
+
hidden_states = residual + attn_output
|
567 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
568 |
+
|
569 |
+
residual = hidden_states
|
570 |
+
hidden_states = self.ln_2(hidden_states)
|
571 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
572 |
+
# residual connection
|
573 |
+
hidden_states = residual + feed_forward_hidden_states
|
574 |
+
|
575 |
+
if use_cache:
|
576 |
+
outputs = (hidden_states,) + outputs
|
577 |
+
else:
|
578 |
+
outputs = (hidden_states,) + outputs[1:]
|
579 |
+
|
580 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
581 |
+
|
582 |
+
|
583 |
+
class DDGPT2PretrainedModel(PreTrainedModel):
|
584 |
+
"""
|
585 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
586 |
+
models.
|
587 |
+
"""
|
588 |
+
|
589 |
+
config_class = DDGPT2Config
|
590 |
+
load_tf_weights = load_tf_weights_in_gpt2
|
591 |
+
base_model_prefix = "transformer"
|
592 |
+
is_parallelizable = True
|
593 |
+
supports_gradient_checkpointing = True
|
594 |
+
_no_split_modules = ["GPT2Block"]
|
595 |
+
_skip_keys_device_placement = "past_key_values"
|
596 |
+
_supports_flash_attn_2 = True
|
597 |
+
_supports_sdpa = True
|
598 |
+
|
599 |
+
def __init__(self, *inputs, **kwargs):
|
600 |
+
super().__init__(*inputs, **kwargs)
|
601 |
+
|
602 |
+
def _init_weights(self, module):
|
603 |
+
"""Initialize the weights."""
|
604 |
+
if isinstance(module, (nn.Linear, Conv1D)):
|
605 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
606 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
607 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
608 |
+
if module.bias is not None:
|
609 |
+
module.bias.data.zero_()
|
610 |
+
elif isinstance(module, nn.Embedding):
|
611 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
612 |
+
if module.padding_idx is not None:
|
613 |
+
module.weight.data[module.padding_idx].zero_()
|
614 |
+
elif isinstance(module, nn.LayerNorm):
|
615 |
+
module.bias.data.zero_()
|
616 |
+
module.weight.data.fill_(1.0)
|
617 |
+
|
618 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
619 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
620 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
621 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
622 |
+
#
|
623 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
624 |
+
for name, p in module.named_parameters():
|
625 |
+
if name == "c_proj.weight":
|
626 |
+
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
|
627 |
+
p.data.normal_(mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer)))
|
628 |
+
|
629 |
+
|
630 |
+
@dataclass
|
631 |
+
class GPT2DoubleHeadsModelOutput(ModelOutput):
|
632 |
+
"""
|
633 |
+
Base class for outputs of models predicting if two sentences are consecutive or not.
|
634 |
+
|
635 |
+
Args:
|
636 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
637 |
+
Language modeling loss.
|
638 |
+
mc_loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `mc_labels` is provided):
|
639 |
+
Multiple choice classification loss.
|
640 |
+
logits (`torch.FloatTensor` of shape `(batch_size, num_choices, sequence_length, config.vocab_size)`):
|
641 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
642 |
+
mc_logits (`torch.FloatTensor` of shape `(batch_size, num_choices)`):
|
643 |
+
Prediction scores of the multiple choice classification head (scores for each choice before SoftMax).
|
644 |
+
past_key_values (`Tuple[Tuple[torch.Tensor]]`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
645 |
+
Tuple of length `config.n_layers`, containing tuples of tensors of shape `(batch_size, num_heads,
|
646 |
+
sequence_length, embed_size_per_head)`).
|
647 |
+
|
648 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
|
649 |
+
`past_key_values` input) to speed up sequential decoding.
|
650 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
651 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
652 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
653 |
+
|
654 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
655 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
656 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
657 |
+
sequence_length)`.
|
658 |
+
|
659 |
+
GPT2Attentions weights after the attention softmax, used to compute the weighted average in the
|
660 |
+
self-attention heads.
|
661 |
+
"""
|
662 |
+
|
663 |
+
loss: Optional[torch.FloatTensor] = None
|
664 |
+
mc_loss: Optional[torch.FloatTensor] = None
|
665 |
+
logits: torch.FloatTensor = None
|
666 |
+
mc_logits: torch.FloatTensor = None
|
667 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
668 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
669 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
670 |
+
|
671 |
+
|
672 |
+
|
673 |
+
class DDGPT2Model(DDGPT2PretrainedModel):
|
674 |
+
_supports_param_buffer_assignment = False
|
675 |
+
|
676 |
+
def __init__(self, config):
|
677 |
+
super().__init__(config)
|
678 |
+
|
679 |
+
self.embed_dim = config.hidden_size
|
680 |
+
|
681 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
682 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
683 |
+
|
684 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
685 |
+
self.h = nn.ModuleList([GPT2Block(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
686 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
687 |
+
|
688 |
+
# Model parallel
|
689 |
+
self.model_parallel = False
|
690 |
+
self.device_map = None
|
691 |
+
self.gradient_checkpointing = False
|
692 |
+
self._attn_implementation = config._attn_implementation
|
693 |
+
|
694 |
+
# Initialize weights and apply final processing
|
695 |
+
self.post_init()
|
696 |
+
|
697 |
+
def parallelize(self, device_map=None):
|
698 |
+
# Check validity of device_map
|
699 |
+
warnings.warn(
|
700 |
+
"`GPT2Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
701 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
702 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
703 |
+
" ...}",
|
704 |
+
FutureWarning,
|
705 |
+
)
|
706 |
+
self.device_map = (
|
707 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
708 |
+
)
|
709 |
+
assert_device_map(self.device_map, len(self.h))
|
710 |
+
self.model_parallel = True
|
711 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
712 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
713 |
+
self.wte = self.wte.to(self.first_device)
|
714 |
+
self.wpe = self.wpe.to(self.first_device)
|
715 |
+
# Load onto devices
|
716 |
+
for k, v in self.device_map.items():
|
717 |
+
for block in v:
|
718 |
+
cuda_device = "cuda:" + str(k)
|
719 |
+
self.h[block] = self.h[block].to(cuda_device)
|
720 |
+
# ln_f to last
|
721 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
722 |
+
|
723 |
+
def deparallelize(self):
|
724 |
+
warnings.warn(
|
725 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
726 |
+
FutureWarning,
|
727 |
+
)
|
728 |
+
self.model_parallel = False
|
729 |
+
self.device_map = None
|
730 |
+
self.first_device = "cpu"
|
731 |
+
self.last_device = "cpu"
|
732 |
+
self.wte = self.wte.to("cpu")
|
733 |
+
self.wpe = self.wpe.to("cpu")
|
734 |
+
for index in range(len(self.h)):
|
735 |
+
self.h[index] = self.h[index].to("cpu")
|
736 |
+
self.ln_f = self.ln_f.to("cpu")
|
737 |
+
torch.cuda.empty_cache()
|
738 |
+
|
739 |
+
def get_input_embeddings(self):
|
740 |
+
return self.wte
|
741 |
+
|
742 |
+
def set_input_embeddings(self, new_embeddings):
|
743 |
+
self.wte = new_embeddings
|
744 |
+
|
745 |
+
def _prune_heads(self, heads_to_prune):
|
746 |
+
"""
|
747 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
748 |
+
"""
|
749 |
+
for layer, heads in heads_to_prune.items():
|
750 |
+
self.h[layer].attn.prune_heads(heads)
|
751 |
+
|
752 |
+
def forward(
|
753 |
+
self,
|
754 |
+
input_ids: Optional[torch.LongTensor] = None,
|
755 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
756 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
757 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
758 |
+
position_ids: Optional[torch.LongTensor] = None,
|
759 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
760 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
761 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
762 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
763 |
+
use_cache: Optional[bool] = None,
|
764 |
+
output_attentions: Optional[bool] = None,
|
765 |
+
output_hidden_states: Optional[bool] = None,
|
766 |
+
return_dict: Optional[bool] = None,
|
767 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
768 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
769 |
+
output_hidden_states = (
|
770 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
771 |
+
)
|
772 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
773 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
774 |
+
|
775 |
+
if input_ids is not None and inputs_embeds is not None:
|
776 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
777 |
+
elif input_ids is not None:
|
778 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
779 |
+
input_shape = input_ids.size()
|
780 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
781 |
+
batch_size = input_ids.shape[0]
|
782 |
+
elif inputs_embeds is not None:
|
783 |
+
input_shape = inputs_embeds.size()[:-1]
|
784 |
+
batch_size = inputs_embeds.shape[0]
|
785 |
+
else:
|
786 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
787 |
+
|
788 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
789 |
+
|
790 |
+
if token_type_ids is not None:
|
791 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
792 |
+
|
793 |
+
if past_key_values is None:
|
794 |
+
past_length = 0
|
795 |
+
past_key_values = tuple([None] * len(self.h))
|
796 |
+
else:
|
797 |
+
past_length = past_key_values[0][0].size(-2)
|
798 |
+
if position_ids is None:
|
799 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
800 |
+
position_ids = position_ids.unsqueeze(0)
|
801 |
+
|
802 |
+
if inputs_embeds is None:
|
803 |
+
inputs_embeds = self.wte(input_ids)
|
804 |
+
position_embeds = self.wpe(position_ids)
|
805 |
+
hidden_states = inputs_embeds + position_embeds.to(inputs_embeds.device)
|
806 |
+
|
807 |
+
# Attention mask.
|
808 |
+
_use_sdpa = self._attn_implementation == "sdpa" and output_attentions is False and head_mask is None
|
809 |
+
attention_mask = attention_mask.view(batch_size, -1) if attention_mask is not None else None
|
810 |
+
if self._attn_implementation == "flash_attention_2":
|
811 |
+
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
812 |
+
elif _use_sdpa:
|
813 |
+
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
814 |
+
attention_mask=attention_mask,
|
815 |
+
input_shape=(batch_size, input_shape[-1]),
|
816 |
+
inputs_embeds=inputs_embeds,
|
817 |
+
past_key_values_length=past_length,
|
818 |
+
)
|
819 |
+
else:
|
820 |
+
if attention_mask is not None:
|
821 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
822 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
823 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
824 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
825 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
826 |
+
attention_mask = attention_mask[:, None, None, :]
|
827 |
+
|
828 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
829 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
830 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
831 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
832 |
+
# effectively the same as removing these entirely.
|
833 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
834 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
835 |
+
|
836 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
837 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
838 |
+
if self.config.add_cross_attention and encoder_hidden_states is not None:
|
839 |
+
encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
|
840 |
+
encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
|
841 |
+
if encoder_attention_mask is None:
|
842 |
+
encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
|
843 |
+
if _use_sdpa:
|
844 |
+
encoder_attention_mask = _prepare_4d_attention_mask_for_sdpa(
|
845 |
+
mask=encoder_attention_mask, dtype=inputs_embeds.dtype, tgt_len=input_shape[-1]
|
846 |
+
)
|
847 |
+
elif not self._attn_implementation == "flash_attention_2":
|
848 |
+
encoder_attention_mask = self.invert_attention_mask(encoder_attention_mask)
|
849 |
+
else:
|
850 |
+
encoder_attention_mask = None
|
851 |
+
|
852 |
+
# Prepare head mask if needed
|
853 |
+
# 1.0 in head_mask indicate we keep the head
|
854 |
+
# attention_probs has shape bsz x n_heads x N x N
|
855 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
856 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
857 |
+
|
858 |
+
if token_type_ids is not None:
|
859 |
+
token_type_embeds = self.wte(token_type_ids)
|
860 |
+
hidden_states = hidden_states + token_type_embeds
|
861 |
+
|
862 |
+
hidden_states = self.drop(hidden_states)
|
863 |
+
|
864 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
865 |
+
|
866 |
+
if self.gradient_checkpointing and self.training:
|
867 |
+
if use_cache:
|
868 |
+
logger.warning_once(
|
869 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
870 |
+
)
|
871 |
+
use_cache = False
|
872 |
+
|
873 |
+
presents = () if use_cache else None
|
874 |
+
all_self_attentions = () if output_attentions else None
|
875 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
876 |
+
all_hidden_states = () if output_hidden_states else None
|
877 |
+
for i in range(len(self.h)):
|
878 |
+
block, layer_past = self.h[i], past_key_values[i]
|
879 |
+
# Model parallel
|
880 |
+
if self.model_parallel:
|
881 |
+
torch.cuda.set_device(hidden_states.device)
|
882 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
883 |
+
if layer_past is not None:
|
884 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
885 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
886 |
+
if attention_mask is not None:
|
887 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
888 |
+
if isinstance(head_mask, torch.Tensor):
|
889 |
+
head_mask = head_mask.to(hidden_states.device)
|
890 |
+
if output_hidden_states:
|
891 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
892 |
+
|
893 |
+
if self.gradient_checkpointing and self.training:
|
894 |
+
outputs = self._gradient_checkpointing_func(
|
895 |
+
block.__call__,
|
896 |
+
hidden_states,
|
897 |
+
None,
|
898 |
+
attention_mask,
|
899 |
+
head_mask[i],
|
900 |
+
encoder_hidden_states,
|
901 |
+
encoder_attention_mask,
|
902 |
+
use_cache,
|
903 |
+
output_attentions,
|
904 |
+
)
|
905 |
+
else:
|
906 |
+
outputs = block(
|
907 |
+
hidden_states,
|
908 |
+
layer_past=layer_past,
|
909 |
+
attention_mask=attention_mask,
|
910 |
+
head_mask=head_mask[i],
|
911 |
+
encoder_hidden_states=encoder_hidden_states,
|
912 |
+
encoder_attention_mask=encoder_attention_mask,
|
913 |
+
use_cache=use_cache,
|
914 |
+
output_attentions=output_attentions,
|
915 |
+
)
|
916 |
+
|
917 |
+
hidden_states = outputs[0]
|
918 |
+
if use_cache is True:
|
919 |
+
presents = presents + (outputs[1],)
|
920 |
+
|
921 |
+
if output_attentions:
|
922 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
923 |
+
if self.config.add_cross_attention:
|
924 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
925 |
+
|
926 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
927 |
+
if self.model_parallel:
|
928 |
+
for k, v in self.device_map.items():
|
929 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
930 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
931 |
+
|
932 |
+
hidden_states = self.ln_f(hidden_states)
|
933 |
+
|
934 |
+
hidden_states = hidden_states.view(output_shape)
|
935 |
+
# Add last hidden state
|
936 |
+
if output_hidden_states:
|
937 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
938 |
+
|
939 |
+
if not return_dict:
|
940 |
+
return tuple(
|
941 |
+
v
|
942 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
943 |
+
if v is not None
|
944 |
+
)
|
945 |
+
|
946 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
947 |
+
last_hidden_state=hidden_states,
|
948 |
+
past_key_values=presents,
|
949 |
+
hidden_states=all_hidden_states,
|
950 |
+
attentions=all_self_attentions,
|
951 |
+
cross_attentions=all_cross_attentions,
|
952 |
+
)
|
953 |
+
|
954 |
+
|
955 |
+
class DDGPT2LMHeadModel(DDGPT2PretrainedModel, GenerationMixin):
|
956 |
+
_tied_weights_keys = ["lm_head.weight"]
|
957 |
+
|
958 |
+
def __init__(self, config):
|
959 |
+
super().__init__(config)
|
960 |
+
self.transformer = DDGPT2Model(config)
|
961 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
962 |
+
|
963 |
+
# Model parallel
|
964 |
+
self.model_parallel = False
|
965 |
+
self.device_map = None
|
966 |
+
|
967 |
+
# Initialize weights and apply final processing
|
968 |
+
self.post_init()
|
969 |
+
|
970 |
+
def parallelize(self, device_map=None):
|
971 |
+
warnings.warn(
|
972 |
+
"`GPT2LMHeadModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
973 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
974 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
975 |
+
" 0, 'transformer.h.1': 1, ...}",
|
976 |
+
FutureWarning,
|
977 |
+
)
|
978 |
+
self.device_map = (
|
979 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
980 |
+
if device_map is None
|
981 |
+
else device_map
|
982 |
+
)
|
983 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
984 |
+
self.transformer.parallelize(self.device_map)
|
985 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
986 |
+
self.model_parallel = True
|
987 |
+
|
988 |
+
def deparallelize(self):
|
989 |
+
warnings.warn(
|
990 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
991 |
+
FutureWarning,
|
992 |
+
)
|
993 |
+
self.transformer.deparallelize()
|
994 |
+
self.transformer = self.transformer.to("cpu")
|
995 |
+
self.lm_head = self.lm_head.to("cpu")
|
996 |
+
self.model_parallel = False
|
997 |
+
torch.cuda.empty_cache()
|
998 |
+
|
999 |
+
def get_output_embeddings(self):
|
1000 |
+
return self.lm_head
|
1001 |
+
|
1002 |
+
def set_output_embeddings(self, new_embeddings):
|
1003 |
+
self.lm_head = new_embeddings
|
1004 |
+
|
1005 |
+
def forward(
|
1006 |
+
self,
|
1007 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1008 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1009 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1010 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1011 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1012 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1013 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1014 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1015 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1016 |
+
labels: Optional[torch.LongTensor] = None,
|
1017 |
+
use_cache: Optional[bool] = None,
|
1018 |
+
output_attentions: Optional[bool] = None,
|
1019 |
+
output_hidden_states: Optional[bool] = None,
|
1020 |
+
return_dict: Optional[bool] = None,
|
1021 |
+
**kwargs,
|
1022 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1023 |
+
r"""
|
1024 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1025 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1026 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1027 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1028 |
+
"""
|
1029 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1030 |
+
|
1031 |
+
transformer_outputs = self.transformer(
|
1032 |
+
input_ids,
|
1033 |
+
past_key_values=past_key_values,
|
1034 |
+
attention_mask=attention_mask,
|
1035 |
+
token_type_ids=token_type_ids,
|
1036 |
+
position_ids=position_ids,
|
1037 |
+
head_mask=head_mask,
|
1038 |
+
inputs_embeds=inputs_embeds,
|
1039 |
+
encoder_hidden_states=encoder_hidden_states,
|
1040 |
+
encoder_attention_mask=encoder_attention_mask,
|
1041 |
+
use_cache=use_cache,
|
1042 |
+
output_attentions=output_attentions,
|
1043 |
+
output_hidden_states=output_hidden_states,
|
1044 |
+
return_dict=return_dict,
|
1045 |
+
)
|
1046 |
+
hidden_states = transformer_outputs[0]
|
1047 |
+
|
1048 |
+
# Set device for model parallelism
|
1049 |
+
if self.model_parallel:
|
1050 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1051 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1052 |
+
|
1053 |
+
lm_logits = self.lm_head(hidden_states)
|
1054 |
+
|
1055 |
+
loss = None
|
1056 |
+
if labels is not None:
|
1057 |
+
# Flatten the tokens
|
1058 |
+
loss = self.loss_function(
|
1059 |
+
lm_logits,
|
1060 |
+
labels,
|
1061 |
+
vocab_size=self.config.vocab_size,
|
1062 |
+
**kwargs,
|
1063 |
+
)
|
1064 |
+
|
1065 |
+
if not return_dict:
|
1066 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1067 |
+
return ((loss,) + output) if loss is not None else output
|
1068 |
+
|
1069 |
+
return CausalLMOutputWithCrossAttentions(
|
1070 |
+
loss=loss,
|
1071 |
+
logits=lm_logits,
|
1072 |
+
past_key_values=transformer_outputs.past_key_values,
|
1073 |
+
hidden_states=transformer_outputs.hidden_states,
|
1074 |
+
attentions=transformer_outputs.attentions,
|
1075 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
1076 |
+
)
|
1077 |
+
|
1078 |
+
@staticmethod
|
1079 |
+
def _reorder_cache(
|
1080 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1081 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1082 |
+
"""
|
1083 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1084 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1085 |
+
beam_idx at every generation step.
|
1086 |
+
"""
|
1087 |
+
return tuple(
|
1088 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1089 |
+
for layer_past in past_key_values
|
1090 |
+
)
|
1091 |
+
|
1092 |
+
__all__ = [
|
1093 |
+
"DDGPT2LMHeadModel",
|
1094 |
+
"DDGPT2Model",
|
1095 |
+
"DDGPT2PretrainedModel",
|
1096 |
+
"load_tf_weights_in_gpt2",
|
1097 |
+
]
|
1098 |
+
|
1099 |
+
|
1100 |
+
if __name__ == "__main__":
|
1101 |
+
cg = GPT2Config.from_pretrained("gpt2-medium")
|
1102 |
+
cg.apply_drift = True
|
1103 |
+
cg.apply_diffusion = True
|
1104 |
+
cg.baseline_each_head = True
|
1105 |
+
model = GPT2LMHeadModel(cg)
|
1106 |
+
from src.utils.model_utlis import print_trainable_parameters
|
1107 |
+
print_trainable_parameters(model)
|
1108 |
+
model(torch.randint(0, 10000, (1, 100)))
|
1109 |
+
print()
|