import torch import torch.nn as nn import torch.nn.functional as F # Very similar to GeGLU or SwiGLU, there's a learned gate FN, uses arctan as the activation fn. class xATGLU(nn.Module): def __init__(self, input_dim, output_dim, bias=True): super().__init__() # GATE path | VALUE path self.proj = nn.Linear(input_dim, output_dim * 2, bias=bias) nn.init.kaiming_normal_(self.proj.weight, nonlinearity='linear') self.alpha = nn.Parameter(torch.zeros(1)) self.half_pi = torch.pi / 2 self.inv_pi = 1 / torch.pi def forward(self, x): projected = self.proj(x) gate_path, value_path = projected.chunk(2, dim=-1) # Apply arctan gating with expanded range via learned alpha -- https://arxiv.org/pdf/2405.20768 gate = (torch.arctan(gate_path) + self.half_pi) * self.inv_pi expanded_gate = gate * (1 + 2 * self.alpha) - self.alpha return expanded_gate * value_path # g(x) × y