File size: 1,207 Bytes
9aa8ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F

from .mlp import LlamaMLP
from .config import LlamaConfig
from .rms_norm import LlamaRMSNorm
from .decoder import LlamaDecoderLayer

class LlamaModel(nn.Module):
    def __init__(self, config: LlamaConfig):
        super().__init__()
        self.config = config
        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=None)
        self.layers = nn.ModuleList([LlamaDecoderLayer(config, i) for i in range(config.num_hidden_layers)])
        self.norm = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        input_ids: torch.LongTensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
    ) -> torch.Tensor:
        hidden_states = self.embed_tokens(input_ids)

        for decoder_layer in self.layers:
            hidden_states = decoder_layer(
                hidden_states,
                attention_mask=attention_mask,
                position_ids=position_ids,
            )

        hidden_states = self.norm(hidden_states)
        return hidden_states