File size: 10,208 Bytes
9aa8ed3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import torch
import triton
import triton.language as tl

# https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/rope.py
# BSD 2-CLAUSE LICENSE
# Copyright 2024 LinkedIn Corporation 
# All Rights Reserved.
# Redistribution and use in source and binary forms, with or
# without modification, are permitted provided that the following
# conditions are met:
# 1. Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# 2. Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

@triton.jit
def _triton_rope(
    q_ptr,
    q_row_stride,
    k_ptr,
    k_row_stride,
    cos,
    cos_row_stride,
    sin,
    sin_row_stride,
    sl,
    bs: tl.constexpr,
    cos_bs: tl.constexpr,
    n_qh: tl.constexpr,
    n_kh: tl.constexpr,
    hd: tl.constexpr,
    pad_n_qh: tl.constexpr,
    pad_n_kh: tl.constexpr,
    pad_hd: tl.constexpr,
    BLOCK_SIZE: tl.constexpr,
    BACKWARD_PASS: tl.constexpr = False,
):
    # q size: (bsz, seq_len, num_q_heads, head_dim)
    # q stride: (seq_len * num_q_heads * head_dim, num_q_heads * head_dim, head_dim, 1)
    # k size: (bsz, seq_len, num_kv_heads, head_dim)
    # k stride: (seq_len * num_kv_heads * head_dim, num_kv_heads * head_dim, head_dim, 1)

    # cos size: (1, seq_len, head_dim) or (bsz, seq_len, head_dim)
    # stride: (seq_len * head_dim, head_dim, 1)
    pid = tl.program_id(0)

    # locate start address
    q_ptr = q_ptr + pid * q_row_stride
    k_ptr = k_ptr + pid * k_row_stride

    # ####################################################################
    # get the cos(mθ_{i...d/2}) and sin(mθ_{i...d/2}) for token position
    # m of this program instance
    # ####################################################################

    # 1. program instances are laid out in a 1D vector of size bsz * seq_len, which
    # effectively represents a 2D grid of size [bsz, seq_len] with seq_len dimension
    # being the fastest changing dimension. Thus we can simply do pid // sl to get the batch index
    # and pid % sl to get the sequence index.
    # 2. We only need the left half of cos and sin matrix because the right half is just
    # a clone of the left half.
    batch_idx = pid // sl
    cos_row_idx = pid % sl
    cos = cos + tl.where(
        cos_bs == 1,
        cos_row_idx * cos_row_stride,
        batch_idx * (sl * cos_row_stride) + cos_row_idx * cos_row_stride,
    )
    sin = sin + tl.where(
        cos_bs == 1,
        cos_row_idx * sin_row_stride,
        batch_idx * (sl * sin_row_stride) + cos_row_idx * sin_row_stride,
    )

    cos_offsets = tl.arange(0, pad_hd // 2)
    cos_mask = cos_offsets < hd // 2
    cos_row = tl.load(cos + cos_offsets, mask=cos_mask, other=0)
    sin_row = tl.load(sin + cos_offsets, mask=cos_mask, other=0)

    # ####################################################################
    # Load the left and right half of q and k for the current
    # program instance (i.e. for the current token) separately
    # ####################################################################
    # left half of the head
    first_half_q_offsets = tl.arange(0, pad_n_qh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
    first_half_k_offsets = tl.arange(0, pad_n_kh)[:, None] * hd + tl.arange(0, pad_hd // 2)[None, :]
    first_q_mask = (tl.arange(0, pad_n_qh)[:, None] < n_qh) & (tl.arange(0, pad_hd // 2)[None, :] < hd // 2)
    first_k_mask = (tl.arange(0, pad_n_kh)[:, None] < n_kh) & (tl.arange(0, pad_hd // 2)[None, :] < hd // 2)
    q_tile_1 = tl.load(q_ptr + first_half_q_offsets, mask=first_q_mask, other=0).to(sin_row.dtype)
    k_tile_1 = tl.load(k_ptr + first_half_k_offsets, mask=first_k_mask, other=0).to(sin_row.dtype)

    # right half of the head
    second_half_q_offsets = first_half_q_offsets + (hd // 2)
    second_half_k_offsets = first_half_k_offsets + (hd // 2)
    second_q_mask = first_q_mask
    second_k_mask = first_k_mask
    q_tile_2 = tl.load(q_ptr + second_half_q_offsets, mask=second_q_mask, other=0).to(sin_row.dtype)
    k_tile_2 = tl.load(k_ptr + second_half_k_offsets, mask=second_k_mask, other=0).to(sin_row.dtype)

    if not BACKWARD_PASS:
        # y = [x1, x2] * [cos, cos] + [-x2, x1] * [sin, sin]
        new_q_tile_1 = q_tile_1 * cos_row - q_tile_2 * sin_row
        tl.store(q_ptr + first_half_q_offsets, new_q_tile_1, mask=first_q_mask)
        new_q_tile_2 = q_tile_2 * cos_row + q_tile_1 * sin_row
        tl.store(q_ptr + second_half_q_offsets, new_q_tile_2, mask=second_q_mask)

        new_k_tile_1 = k_tile_1 * cos_row - k_tile_2 * sin_row
        tl.store(k_ptr + first_half_k_offsets, new_k_tile_1, mask=first_k_mask)
        new_k_tile_2 = k_tile_2 * cos_row + k_tile_1 * sin_row
        tl.store(k_ptr + second_half_k_offsets, new_k_tile_2, mask=second_k_mask)
    else:
        # with some math, we can get:
        # dy = [dx1, dx2] * [cos, cos] + [-dx2, dx1] * [-sin, -sin]
        new_q_tile_1 = q_tile_1 * cos_row + q_tile_2 * sin_row
        tl.store(q_ptr + first_half_q_offsets, new_q_tile_1, mask=first_q_mask)
        new_q_tile_2 = q_tile_2 * cos_row - q_tile_1 * sin_row
        tl.store(q_ptr + second_half_q_offsets, new_q_tile_2, mask=second_q_mask)

        new_k_tile_1 = k_tile_1 * cos_row + k_tile_2 * sin_row
        tl.store(k_ptr + first_half_k_offsets, new_k_tile_1, mask=first_k_mask)
        new_k_tile_2 = k_tile_2 * cos_row - k_tile_1 * sin_row
        tl.store(k_ptr + second_half_k_offsets, new_k_tile_2, mask=second_k_mask)


def rope_forward(q, k, cos, sin):
    # transpose it back to the physical shape because Triton looks at the physical storage
    # note: q and k are incontiguous before the transformation and will become contiguous after transpose
    batch_size, seq_len, n_q_head, head_dim = q.shape
    n_kv_head = k.shape[2]
    pad_hd = triton.next_power_of_2(head_dim)
    pad_n_q_head = triton.next_power_of_2(n_q_head)
    pad_n_kv_head = triton.next_power_of_2(n_kv_head)
    BLOCK_SIZE = max(pad_n_q_head, pad_n_kv_head)

    n_row = batch_size * seq_len

    # ensure tensors passed into the kernel are contiguous. It will be no-op if they are already contiguous
    q = q.contiguous()
    k = k.contiguous()
    cos = cos.contiguous()
    sin = sin.contiguous()
    cos_batch_size = cos.shape[0]

    _triton_rope[(n_row,)](
        q,
        q.stride(1),
        k,
        k.stride(1),
        cos,
        cos.stride(-2),
        sin,
        sin.stride(-2),
        seq_len,
        batch_size,
        cos_batch_size,
        n_q_head,
        n_kv_head,
        head_dim,
        pad_n_q_head,
        pad_n_kv_head,
        pad_hd,
        BLOCK_SIZE=BLOCK_SIZE,
        BACKWARD_PASS=False,
    )
    return q, k, cos, sin


def rope_backward(dq, dk, cos, sin):
    batch_size, seq_len, n_q_head, head_dim = dq.shape
    cos_batch_size = cos.shape[0]
    n_kv_head = dk.shape[2]
    pad_hd = triton.next_power_of_2(head_dim)
    pad_n_q_head = triton.next_power_of_2(n_q_head)
    pad_n_kv_head = triton.next_power_of_2(n_kv_head)
    BLOCK_SIZE = max(pad_n_q_head, pad_n_kv_head)

    n_row = batch_size * seq_len

    # ensure dq and dk are contiguous
    dq = dq.contiguous()
    dk = dk.contiguous()

    # backward is similar to forward except swapping few ops
    _triton_rope[(n_row,)](
        dq,
        dq.stride(1),
        dk,
        dk.stride(1),
        cos,
        cos.stride(-2),
        sin,
        sin.stride(-2),
        seq_len,
        batch_size,
        cos_batch_size,
        n_q_head,
        n_kv_head,
        head_dim,
        pad_n_q_head,
        pad_n_kv_head,
        pad_hd,
        BLOCK_SIZE=BLOCK_SIZE,
        BACKWARD_PASS=True,
    )
    return dq, dk


class LigerRopeFunction(torch.autograd.Function):
    """
    Triton implementation of the Rotary Positional Embedding (RoPE) operation. Please note that
    this implements the HuggingFace Llama & Mistral version, whose rotation matrix is slightly different
    than the original RoPE paper.

    Please find the corresponding HuggingFace implementation here:
    https://github.com/huggingface/transformers/blob/v4.40.2/src/transformers/models/llama/modeling_llama.py#L184

    For more details about the rotation matrix used here, please refer to:
    https://discuss.huggingface.co/t/is-llama-rotary-embedding-implementation-correct/44509/2
    """

    @staticmethod
    def forward(ctx, q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
        """
        q size: (bsz, n_q_head, seq_len, head_dim)
        k size: (bsz, n_kv_head, seq_len, head_dim)
        cos size: (1, seq_len, head_dim) or (bsz, seq_len, head_dim)
        sin size: (1, seq_len, head_dim) or (bsz, seq_len, head_dim)
        """
        q, k, cos, sin = rope_forward(q, k, cos, sin)
        ctx.save_for_backward(cos, sin)
        return q, k

    def backward(ctx, dq, dk):
        """
        dq size: (bsz, n_q_head, seq_len, head_dim)
        dk size: (bsz, n_kv_head, seq_len, head_dim)
        cos size: (1, seq_len, head_dim) or (bsz, seq_len, head_dim)
        sin size: (1, seq_len, head_dim) or (bsz, seq_len, head_dim)
        """

        cos, sin = ctx.saved_tensors
        dq, dk = rope_backward(dq, dk, cos, sin)
        return dq, dk, None, None, None, None