File size: 6,223 Bytes
ec95163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72cb157
 
 
 
 
 
 
 
 
 
 
 
ec95163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72cb157
 
ec95163
 
72cb157
ec95163
 
 
 
 
 
 
 
72cb157
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ec95163
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
---
license: apache-2.0
base_model: Bisher/wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
- f1
model-index:
- name: wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen_chngd_classifier
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen_chngd_classifier

This model is a fine-tuned version of [Bisher/wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen](https://huggingface.co/Bisher/wav2vec2_ASV_deepfake_audio_detection_DF_finetune_frozen) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6355
- Accuracy: 0.9146
- Precision: 0.9161
- Recall: 0.9146
- F1: 0.8866
- Tp: 330
- Tn: 17889
- Fn: 1677
- Fp: 24
- Eer: 0.1639
- Min Tdcf: 0.0357
- Auc Roc: 0.9189

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 512
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 5
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | Precision | Recall | F1     | Tp  | Tn    | Fn   | Fp  | Eer    | Min Tdcf | Auc Roc |
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|:---:|:-----:|:----:|:---:|:------:|:--------:|:-------:|
| 0.6678        | 0.0206 | 5    | 0.6581          | 0.9410   | 0.9381    | 0.9410 | 0.9331 | 963 | 17782 | 1044 | 131 | 0.0717 | 0.0322   | 0.9729  |
| 0.6124        | 0.0412 | 10   | 0.5702          | 0.9060   | 0.9082    | 0.9060 | 0.8681 | 145 | 17902 | 1862 | 11  | 0.1978 | 0.0322   | 0.8640  |
| 0.5335        | 0.0619 | 15   | 0.5016          | 0.9016   | 0.9093    | 0.9016 | 0.8573 | 48  | 17912 | 1959 | 1   | 0.3503 | 0.0363   | 0.6924  |
| 0.4592        | 0.0825 | 20   | 0.4335          | 0.9094   | 0.9108    | 0.9094 | 0.8759 | 221 | 17895 | 1786 | 18  | 0.1774 | 0.0323   | 0.8683  |
| 0.3927        | 0.1031 | 25   | 0.3781          | 0.9104   | 0.9110    | 0.9104 | 0.8782 | 244 | 17891 | 1763 | 22  | 0.2297 | 0.0315   | 0.8110  |
| 0.3231        | 0.1237 | 30   | 0.3201          | 0.9138   | 0.9151    | 0.9138 | 0.8851 | 314 | 17889 | 1693 | 24  | 0.2900 | 0.0309   | 0.7424  |
| 0.2519        | 0.1443 | 35   | 0.2804          | 0.9196   | 0.9215    | 0.9196 | 0.8960 | 431 | 17887 | 1576 | 26  | 0.1141 | 0.0295   | 0.9340  |
| 0.1963        | 0.1649 | 40   | 0.2395          | 0.9346   | 0.9350    | 0.9346 | 0.9216 | 751 | 17866 | 1256 | 47  | 0.0898 | 0.0286   | 0.9623  |
| 0.1423        | 0.1856 | 45   | 0.3794          | 0.9048   | 0.9032    | 0.9048 | 0.8659 | 127 | 17897 | 1880 | 16  | 0.0901 | 0.0298   | 0.9659  |
| 0.1046        | 0.2062 | 50   | 0.3194          | 0.9287   | 0.9286    | 0.9287 | 0.9124 | 636 | 17863 | 1371 | 50  | 0.0751 | 0.0318   | 0.9767  |
| 0.0681        | 0.2268 | 55   | 0.4859          | 0.9021   | 0.9055    | 0.9021 | 0.8586 | 60  | 17909 | 1947 | 4   | 0.1709 | 0.0378   | 0.9015  |
| 0.0473        | 0.2474 | 60   | 0.5605          | 0.9100   | 0.9101    | 0.9100 | 0.8774 | 237 | 17890 | 1770 | 23  | 0.7055 | 0.0382   | 0.3149  |
| 0.0323        | 0.2680 | 65   | 0.5107          | 0.9164   | 0.9178    | 0.9164 | 0.8900 | 367 | 17887 | 1640 | 26  | 0.0703 | 0.0337   | 0.9791  |
| 0.0339        | 0.2887 | 70   | 0.8921          | 0.9026   | 0.9009    | 0.9026 | 0.8604 | 77  | 17903 | 1930 | 10  | 0.8316 | 0.0435   | 0.1773  |
| 0.0423        | 0.3093 | 75   | 0.8964          | 0.9030   | 0.8998    | 0.9030 | 0.8615 | 87  | 17900 | 1920 | 13  | 0.0732 | 0.0327   | 0.9753  |
| 0.0456        | 0.3299 | 80   | 1.0843          | 0.9013   | 0.8935    | 0.9013 | 0.8574 | 51  | 17902 | 1956 | 11  | 0.8520 | 0.0478   | 0.1126  |
| 0.0712        | 0.3505 | 85   | 0.8587          | 0.9023   | 0.8998    | 0.9023 | 0.8597 | 71  | 17903 | 1936 | 10  | 0.8665 | 0.0480   | 0.0990  |
| 0.0629        | 0.3711 | 90   | 0.4810          | 0.9267   | 0.9278    | 0.9267 | 0.9087 | 583 | 17877 | 1424 | 36  | 0.0848 | 0.0328   | 0.9683  |
| 0.0477        | 0.3918 | 95   | 0.9415          | 0.9094   | 0.9114    | 0.9094 | 0.8757 | 218 | 17897 | 1789 | 16  | 0.1219 | 0.0408   | 0.8890  |
| 0.0484        | 0.4124 | 100  | 0.7774          | 0.9150   | 0.9170    | 0.9150 | 0.8873 | 336 | 17891 | 1671 | 22  | 0.6906 | 0.0383   | 0.3129  |
| 0.0449        | 0.4330 | 105  | 0.3949          | 0.9197   | 0.9199    | 0.9197 | 0.8967 | 444 | 17876 | 1563 | 37  | 0.6527 | 0.0363   | 0.3629  |
| 0.0567        | 0.4536 | 110  | 0.5853          | 0.9232   | 0.9212    | 0.9232 | 0.9040 | 540 | 17850 | 1467 | 63  | 0.2192 | 0.0355   | 0.8158  |
| 0.0416        | 0.4742 | 115  | 0.7031          | 0.9036   | 0.9054    | 0.9036 | 0.8626 | 95  | 17905 | 1912 | 8   | 0.7633 | 0.0408   | 0.2549  |
| 0.1778        | 0.4948 | 120  | 0.5440          | 0.9033   | 0.9093    | 0.9033 | 0.8613 | 83  | 17910 | 1924 | 3   | 0.7389 | 0.0398   | 0.2838  |
| 0.036         | 0.5155 | 125  | 0.5825          | 0.9161   | 0.9187    | 0.9161 | 0.8892 | 356 | 17893 | 1651 | 20  | 0.1538 | 0.0366   | 0.9078  |
| 0.0797        | 0.5361 | 130  | 0.5864          | 0.9027   | 0.9059    | 0.9027 | 0.8601 | 73  | 17908 | 1934 | 5   | 0.2236 | 0.0407   | 0.7721  |
| 0.0669        | 0.5567 | 135  | 0.4264          | 0.9036   | 0.9079    | 0.9036 | 0.8623 | 92  | 17908 | 1915 | 5   | 0.1597 | 0.0370   | 0.8791  |
| 0.0353        | 0.5773 | 140  | 0.6355          | 0.9146   | 0.9161    | 0.9146 | 0.8866 | 330 | 17889 | 1677 | 24  | 0.1639 | 0.0357   | 0.9189  |


### Framework versions

- Transformers 4.44.0
- Pytorch 2.4.0
- Datasets 2.21.0
- Tokenizers 0.19.1