BioMike commited on
Commit
3c70f97
ยท
verified ยท
1 Parent(s): 5e2efa1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +53 -177
README.md CHANGED
@@ -1,199 +1,75 @@
1
- ---
2
- library_name: transformers
3
- tags: []
4
- ---
5
-
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a ๐Ÿค— transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
 
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
 
 
87
 
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
 
161
- [More Information Needed]
162
 
163
- #### Hardware
 
 
 
 
 
164
 
165
- [More Information Needed]
166
 
167
- #### Software
168
 
169
- [More Information Needed]
 
 
 
170
 
171
- ## Citation [optional]
172
 
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
- **BibTeX:**
 
176
 
177
- [More Information Needed]
178
 
179
- **APA:**
180
 
181
- [More Information Needed]
 
 
 
 
 
 
182
 
183
- ## Glossary [optional]
 
 
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
 
186
 
187
- [More Information Needed]
 
188
 
189
- ## More Information [optional]
 
 
 
190
 
191
- [More Information Needed]
 
 
192
 
193
- ## Model Card Authors [optional]
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
198
 
199
- [More Information Needed]
 
 
 
 
1
+ # ๐Ÿง  ClipSegMultiClass
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
+ Multiclass semantic segmentation using CLIP + CLIPSeg.
4
+ Fine-tuned version of [`CIDAS/clipseg-rd64-refined`](https://huggingface.co/CIDAS/clipseg-rd64-refined)
5
+ Supports multiple classes in a single forward pass.
6
 
7
+ ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8
 
9
+ ## ๐Ÿ”ฌ Model
10
 
11
+ **Name:** [`BioMike/clipsegmulticlass_v1`](https://huggingface.co/BioMike/clipsegmulticlass_v1)
12
+ **Repository:** [github.com/BioMikeUkr/clipsegmulticlass](https://github.com/BioMikeUkr/clipsegmulticlass)
13
+ **Base:** `CIDAS/clipseg-rd64-refined`
14
+ **Classes:** `["background", "Pig", "Horse", "Sheep"]`
15
+ **Image Size:** 352ร—352
16
+ **Trained on:** OpenImages segmentation subset (custom fruit/animal dataset)
17
 
18
+ ---
19
 
20
+ ## ๐Ÿ“Š Evaluation
21
 
22
+ | Model | Precision | Recall | F1 Score | Accuracy |
23
+ |-----------------------------|-----------|---------|----------|----------|
24
+ | CIDAS/clipseg-rd64-refined | 0.5239 | 0.2114 | 0.2882 | 0.2665 |
25
+ | BioMike/clipsegmulticlass_v1| 0.7460 | 0.5035 | 0.6009 | 0.6763 |
26
 
27
+ ---
28
 
29
+ ## ๐ŸŽฎ Demo
30
 
31
+ ๐Ÿ‘‰ Try it online:
32
+ [Hugging Face Space ๐Ÿš€](https://huggingface.co/spaces/BioMike/clipsegmulticlass)
33
 
34
+ ---
35
 
36
+ ## ๐Ÿ“ฆ Usage
37
 
38
+ ```python
39
+ from PIL import Image
40
+ import torch
41
+ import matplotlib.pyplot as plt
42
+ import numpy as np
43
+ from model import ClipSegMultiClassModel
44
+ from config import ClipSegMultiClassConfig
45
 
46
+ # Load model
47
+ model = ClipSegMultiClassModel.from_pretrained("trained_clipseg_multiclass").to("cuda").eval()
48
+ config = model.config # contains label2color
49
 
50
+ # Load image
51
+ image = Image.open("pigs.jpg").convert("RGB")
52
 
53
+ # Run inference
54
+ mask = model.predict(image) # shape: [1, H, W]
55
 
56
+ # Visualize
57
+ def visualize_mask(mask_tensor: torch.Tensor, label2color: dict):
58
+ if mask_tensor.dim() == 3:
59
+ mask_tensor = mask_tensor.squeeze(0)
60
 
61
+ mask_np = mask_tensor.cpu().numpy().astype(np.uint8) # [H, W]
62
+ h, w = mask_np.shape
63
+ color_mask = np.zeros((h, w, 3), dtype=np.uint8)
64
 
65
+ for class_idx, color in label2color.items():
66
+ color_mask[mask_np == class_idx] = color
67
 
68
+ return color_mask
69
 
70
+ color_mask = visualize_mask(mask, config.label2color)
71
 
72
+ plt.imshow(color_mask)
73
+ plt.axis("off")
74
+ plt.title("Predicted Segmentation Mask")
75
+ plt.show()