Update modeling_clip_masked_lm.py
Browse files- modeling_clip_masked_lm.py +16 -11
modeling_clip_masked_lm.py
CHANGED
@@ -2,33 +2,38 @@ from typing import Optional, Tuple, Union
|
|
2 |
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
-
from transformers import CLIPTextConfig
|
6 |
from transformers.modeling_outputs import MaskedLMOutput
|
7 |
-
from transformers.models.clip.modeling_clip import
|
|
|
|
|
|
|
8 |
from transformers.models.roberta.modeling_roberta import RobertaLMHead
|
9 |
|
10 |
|
11 |
class CLIPTextModelForMaskedLM(CLIPPreTrainedModel):
|
12 |
config_class = CLIPTextConfig
|
13 |
|
|
|
|
|
14 |
def __init__(self, config: CLIPTextConfig):
|
15 |
super().__init__(config)
|
16 |
-
self.
|
17 |
self.lm_head = RobertaLMHead(config)
|
18 |
|
19 |
self.post_init()
|
20 |
|
21 |
-
def get_input_embeddings(self):
|
22 |
-
return self.
|
23 |
|
24 |
-
def set_input_embeddings(self, value):
|
25 |
-
self.
|
26 |
|
27 |
-
def get_output_embeddings(self):
|
28 |
return self.lm_head.decoder
|
29 |
|
30 |
-
def set_output_embeddings(self,
|
31 |
-
self.lm_head.decoder =
|
32 |
|
33 |
def forward(
|
34 |
self,
|
@@ -44,7 +49,7 @@ class CLIPTextModelForMaskedLM(CLIPPreTrainedModel):
|
|
44 |
return_dict if return_dict is not None else self.config.use_return_dict
|
45 |
)
|
46 |
|
47 |
-
outputs = self.
|
48 |
input_ids=input_ids,
|
49 |
attention_mask=attention_mask,
|
50 |
position_ids=position_ids,
|
|
|
2 |
|
3 |
import torch
|
4 |
from torch import nn
|
5 |
+
from transformers import CLIPTextConfig
|
6 |
from transformers.modeling_outputs import MaskedLMOutput
|
7 |
+
from transformers.models.clip.modeling_clip import (
|
8 |
+
CLIPPreTrainedModel,
|
9 |
+
CLIPTextTransformer,
|
10 |
+
)
|
11 |
from transformers.models.roberta.modeling_roberta import RobertaLMHead
|
12 |
|
13 |
|
14 |
class CLIPTextModelForMaskedLM(CLIPPreTrainedModel):
|
15 |
config_class = CLIPTextConfig
|
16 |
|
17 |
+
_no_split_modules = ["CLIPEncoderLayer"]
|
18 |
+
|
19 |
def __init__(self, config: CLIPTextConfig):
|
20 |
super().__init__(config)
|
21 |
+
self.text_model = CLIPTextTransformer(config)
|
22 |
self.lm_head = RobertaLMHead(config)
|
23 |
|
24 |
self.post_init()
|
25 |
|
26 |
+
def get_input_embeddings(self) -> nn.Module:
|
27 |
+
return self.text_model.embeddings.token_embedding
|
28 |
|
29 |
+
def set_input_embeddings(self, value: nn.Module) -> None:
|
30 |
+
self.text_model.embeddings.token_embedding = value
|
31 |
|
32 |
+
def get_output_embeddings(self) -> nn.Module:
|
33 |
return self.lm_head.decoder
|
34 |
|
35 |
+
def set_output_embeddings(self, value: nn.Module) -> None:
|
36 |
+
self.lm_head.decoder = value
|
37 |
|
38 |
def forward(
|
39 |
self,
|
|
|
49 |
return_dict if return_dict is not None else self.config.use_return_dict
|
50 |
)
|
51 |
|
52 |
+
outputs = self.text_model(
|
53 |
input_ids=input_ids,
|
54 |
attention_mask=attention_mask,
|
55 |
position_ids=position_ids,
|