Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,42 @@
|
|
1 |
-
---
|
2 |
-
license: openrail
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: openrail
|
3 |
+
datasets:
|
4 |
+
- Binarybardakshat/SVLM-ACL-DATASET
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
library_name: transformers
|
8 |
+
---
|
9 |
+
# SVLM: A Question-Answering Model for ACL Research Papers
|
10 |
+
|
11 |
+
This model, `SVLM`, is designed to answer questions based on research papers from the ACL dataset. It leverages the BART architecture to generate precise answers from scientific abstracts.
|
12 |
+
|
13 |
+
## Model Details
|
14 |
+
|
15 |
+
- **Model Architecture:** BART (Bidirectional and Auto-Regressive Transformers)
|
16 |
+
- **Framework:** TensorFlow
|
17 |
+
- **Dataset:** [Binarybardakshat/SVLM-ACL-DATASET](https://huggingface.co/datasets/Binarybardakshat/SVLM-ACL-DATASET)
|
18 |
+
- **Author:** @binarybardakshat (Akshat Shukla)
|
19 |
+
- **Purpose:** The model is trained to provide answers to questions from the ACL research paper dataset.
|
20 |
+
|
21 |
+
## Usage
|
22 |
+
|
23 |
+
To use this model with the Hugging Face Interface API:
|
24 |
+
|
25 |
+
```python
|
26 |
+
from transformers import AutoTokenizer, TFAutoModelForSeq2SeqLM
|
27 |
+
|
28 |
+
# Load the model and tokenizer
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("binarybardakshat/SVLM")
|
30 |
+
model = TFAutoModelForSeq2SeqLM.from_pretrained("binarybardakshat/SVLM")
|
31 |
+
|
32 |
+
# Example input
|
33 |
+
input_text = "What is the main contribution of the paper titled 'Your Paper Title'?"
|
34 |
+
|
35 |
+
# Tokenize input
|
36 |
+
inputs = tokenizer(input_text, return_tensors="tf", padding=True, truncation=True)
|
37 |
+
|
38 |
+
# Generate answer
|
39 |
+
outputs = model.generate(inputs.input_ids, max_length=50, num_beams=5, early_stopping=True)
|
40 |
+
answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
+
|
42 |
+
print("Answer:", answer)
|