Add link to paper (#2)
Browse files- Add link to paper (3038c0b05c28649527be9c05d9a6b509cbc25de5)
Co-authored-by: Omar Sanseviero <[email protected]>
README.md
CHANGED
|
@@ -1,40 +1,42 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
| 4 |
-
|
| 5 |
-
We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).
|
| 6 |
-
|
| 7 |
-
Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**.
|
| 8 |
-
|
| 9 |
-
This is the 6.7B version of AutoCoder.
|
| 10 |
-
|
| 11 |
-
See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder).
|
| 12 |
-
|
| 13 |
-
Simple test script:
|
| 14 |
-
|
| 15 |
-
```
|
| 16 |
-
model_path = ""
|
| 17 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 18 |
-
model = AutoModelForCausalLM.from_pretrained(model_path,
|
| 19 |
-
device_map="auto")
|
| 20 |
-
|
| 21 |
-
HumanEval = load_dataset("evalplus/humanevalplus")
|
| 22 |
-
|
| 23 |
-
Input = "" # input your question here
|
| 24 |
-
|
| 25 |
-
messages=[
|
| 26 |
-
{ 'role': 'user', 'content': Input}
|
| 27 |
-
]
|
| 28 |
-
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True,
|
| 29 |
-
return_tensors="pt").to(model.device)
|
| 30 |
-
|
| 31 |
-
outputs = model.generate(inputs,
|
| 32 |
-
max_new_tokens=1024,
|
| 33 |
-
do_sample=False,
|
| 34 |
-
temperature=0.0,
|
| 35 |
-
top_p=1.0,
|
| 36 |
-
num_return_sequences=1,
|
| 37 |
-
eos_token_id=tokenizer.eos_token_id)
|
| 38 |
-
|
| 39 |
-
answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
| 40 |
-
```
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
|
| 5 |
+
We introduced a new model designed for the Code generation task. It 33B version's test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).
|
| 6 |
+
|
| 7 |
+
Additionally, compared to previous open-source models, AutoCoder offers a new feature: it can **automatically install the required packages** and attempt to run the code until it deems there are no issues, **whenever the user wishes to execute the code**.
|
| 8 |
+
|
| 9 |
+
This is the 6.7B version of AutoCoder.
|
| 10 |
+
|
| 11 |
+
See details on the [AutoCoder GitHub](https://github.com/bin123apple/AutoCoder).
|
| 12 |
+
|
| 13 |
+
Simple test script:
|
| 14 |
+
|
| 15 |
+
```
|
| 16 |
+
model_path = ""
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 18 |
+
model = AutoModelForCausalLM.from_pretrained(model_path,
|
| 19 |
+
device_map="auto")
|
| 20 |
+
|
| 21 |
+
HumanEval = load_dataset("evalplus/humanevalplus")
|
| 22 |
+
|
| 23 |
+
Input = "" # input your question here
|
| 24 |
+
|
| 25 |
+
messages=[
|
| 26 |
+
{ 'role': 'user', 'content': Input}
|
| 27 |
+
]
|
| 28 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True,
|
| 29 |
+
return_tensors="pt").to(model.device)
|
| 30 |
+
|
| 31 |
+
outputs = model.generate(inputs,
|
| 32 |
+
max_new_tokens=1024,
|
| 33 |
+
do_sample=False,
|
| 34 |
+
temperature=0.0,
|
| 35 |
+
top_p=1.0,
|
| 36 |
+
num_return_sequences=1,
|
| 37 |
+
eos_token_id=tokenizer.eos_token_id)
|
| 38 |
+
|
| 39 |
+
answer = tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True)
|
| 40 |
+
```
|
| 41 |
+
|
| 42 |
+
Paper: https://arxiv.org/abs/2405.14906
|