BilalMuftuoglu commited on
Commit
16cd8ee
·
verified ·
1 Parent(s): fd30868

Model save

Browse files
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.8591549295774648
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.4151
36
- - Accuracy: 0.8592
37
 
38
  ## Model description
39
 
@@ -67,99 +67,99 @@ The following hyperparameters were used during training:
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-------:|:----:|:---------------:|:--------:|
70
- | No log | 0.9231 | 3 | 0.7462 | 0.4930 |
71
- | No log | 1.8462 | 6 | 0.6783 | 0.5775 |
72
- | No log | 2.7692 | 9 | 0.6408 | 0.6338 |
73
- | 0.7011 | 4.0 | 13 | 0.6078 | 0.7324 |
74
- | 0.7011 | 4.9231 | 16 | 0.5912 | 0.7746 |
75
- | 0.7011 | 5.8462 | 19 | 0.6206 | 0.5634 |
76
- | 0.6334 | 6.7692 | 22 | 0.5421 | 0.7324 |
77
- | 0.6334 | 8.0 | 26 | 0.5170 | 0.7183 |
78
- | 0.6334 | 8.9231 | 29 | 0.5055 | 0.7746 |
79
- | 0.5715 | 9.8462 | 32 | 0.5054 | 0.7183 |
80
- | 0.5715 | 10.7692 | 35 | 0.5727 | 0.6761 |
81
- | 0.5715 | 12.0 | 39 | 0.4596 | 0.7606 |
82
- | 0.512 | 12.9231 | 42 | 0.4309 | 0.7887 |
83
- | 0.512 | 13.8462 | 45 | 0.4323 | 0.8028 |
84
- | 0.512 | 14.7692 | 48 | 0.4974 | 0.7042 |
85
- | 0.4498 | 16.0 | 52 | 0.4501 | 0.7465 |
86
- | 0.4498 | 16.9231 | 55 | 0.4345 | 0.7606 |
87
- | 0.4498 | 17.8462 | 58 | 0.4992 | 0.8169 |
88
- | 0.3786 | 18.7692 | 61 | 0.4576 | 0.7746 |
89
- | 0.3786 | 20.0 | 65 | 0.4758 | 0.7887 |
90
- | 0.3786 | 20.9231 | 68 | 0.6087 | 0.7183 |
91
- | 0.3595 | 21.8462 | 71 | 0.5352 | 0.7887 |
92
- | 0.3595 | 22.7692 | 74 | 0.4860 | 0.7746 |
93
- | 0.3595 | 24.0 | 78 | 0.4624 | 0.7465 |
94
- | 0.3018 | 24.9231 | 81 | 0.5940 | 0.7465 |
95
- | 0.3018 | 25.8462 | 84 | 0.4864 | 0.7746 |
96
- | 0.3018 | 26.7692 | 87 | 0.4622 | 0.7887 |
97
- | 0.2634 | 28.0 | 91 | 0.4574 | 0.8028 |
98
- | 0.2634 | 28.9231 | 94 | 0.4834 | 0.7887 |
99
- | 0.2634 | 29.8462 | 97 | 0.7058 | 0.7183 |
100
- | 0.2705 | 30.7692 | 100 | 0.6007 | 0.7746 |
101
- | 0.2705 | 32.0 | 104 | 0.5075 | 0.8169 |
102
- | 0.2705 | 32.9231 | 107 | 0.4807 | 0.8169 |
103
- | 0.2222 | 33.8462 | 110 | 0.5054 | 0.8169 |
104
- | 0.2222 | 34.7692 | 113 | 0.4999 | 0.7606 |
105
- | 0.2222 | 36.0 | 117 | 0.4836 | 0.7887 |
106
- | 0.1945 | 36.9231 | 120 | 0.5453 | 0.7606 |
107
- | 0.1945 | 37.8462 | 123 | 0.4151 | 0.8592 |
108
- | 0.1945 | 38.7692 | 126 | 0.4407 | 0.8169 |
109
- | 0.2075 | 40.0 | 130 | 0.7065 | 0.7746 |
110
- | 0.2075 | 40.9231 | 133 | 0.4592 | 0.8028 |
111
- | 0.2075 | 41.8462 | 136 | 0.5611 | 0.8169 |
112
- | 0.2075 | 42.7692 | 139 | 0.4973 | 0.8028 |
113
- | 0.1845 | 44.0 | 143 | 0.4929 | 0.8169 |
114
- | 0.1845 | 44.9231 | 146 | 0.5010 | 0.8169 |
115
- | 0.1845 | 45.8462 | 149 | 0.5321 | 0.8310 |
116
- | 0.1399 | 46.7692 | 152 | 0.5592 | 0.8310 |
117
- | 0.1399 | 48.0 | 156 | 0.5694 | 0.8169 |
118
- | 0.1399 | 48.9231 | 159 | 0.5988 | 0.8028 |
119
- | 0.1575 | 49.8462 | 162 | 0.5647 | 0.7887 |
120
- | 0.1575 | 50.7692 | 165 | 0.5080 | 0.8028 |
121
- | 0.1575 | 52.0 | 169 | 0.5608 | 0.8028 |
122
- | 0.1628 | 52.9231 | 172 | 0.5771 | 0.7887 |
123
- | 0.1628 | 53.8462 | 175 | 0.5864 | 0.7887 |
124
- | 0.1628 | 54.7692 | 178 | 0.6020 | 0.8169 |
125
- | 0.1247 | 56.0 | 182 | 0.6511 | 0.8028 |
126
- | 0.1247 | 56.9231 | 185 | 0.6026 | 0.7746 |
127
- | 0.1247 | 57.8462 | 188 | 0.6174 | 0.7887 |
128
- | 0.1343 | 58.7692 | 191 | 0.6472 | 0.7887 |
129
- | 0.1343 | 60.0 | 195 | 0.6185 | 0.7887 |
130
- | 0.1343 | 60.9231 | 198 | 0.5780 | 0.8169 |
131
- | 0.1404 | 61.8462 | 201 | 0.5088 | 0.8169 |
132
- | 0.1404 | 62.7692 | 204 | 0.4798 | 0.8310 |
133
- | 0.1404 | 64.0 | 208 | 0.5183 | 0.8310 |
134
- | 0.1199 | 64.9231 | 211 | 0.4969 | 0.8310 |
135
- | 0.1199 | 65.8462 | 214 | 0.4816 | 0.8310 |
136
- | 0.1199 | 66.7692 | 217 | 0.4766 | 0.8592 |
137
- | 0.1321 | 68.0 | 221 | 0.4813 | 0.8451 |
138
- | 0.1321 | 68.9231 | 224 | 0.5145 | 0.8169 |
139
- | 0.1321 | 69.8462 | 227 | 0.5145 | 0.8169 |
140
- | 0.1183 | 70.7692 | 230 | 0.6660 | 0.8169 |
141
- | 0.1183 | 72.0 | 234 | 0.5571 | 0.8028 |
142
- | 0.1183 | 72.9231 | 237 | 0.5239 | 0.8310 |
143
- | 0.1239 | 73.8462 | 240 | 0.5200 | 0.8310 |
144
- | 0.1239 | 74.7692 | 243 | 0.5257 | 0.8310 |
145
- | 0.1239 | 76.0 | 247 | 0.5307 | 0.8310 |
146
- | 0.1105 | 76.9231 | 250 | 0.5485 | 0.8028 |
147
- | 0.1105 | 77.8462 | 253 | 0.5528 | 0.8169 |
148
- | 0.1105 | 78.7692 | 256 | 0.5314 | 0.8169 |
149
- | 0.1008 | 80.0 | 260 | 0.6122 | 0.8169 |
150
- | 0.1008 | 80.9231 | 263 | 0.5795 | 0.8169 |
151
- | 0.1008 | 81.8462 | 266 | 0.5280 | 0.8028 |
152
- | 0.1008 | 82.7692 | 269 | 0.5277 | 0.8028 |
153
- | 0.1023 | 84.0 | 273 | 0.5573 | 0.8169 |
154
- | 0.1023 | 84.9231 | 276 | 0.5539 | 0.8169 |
155
- | 0.1023 | 85.8462 | 279 | 0.5272 | 0.7887 |
156
- | 0.089 | 86.7692 | 282 | 0.5086 | 0.8169 |
157
- | 0.089 | 88.0 | 286 | 0.4971 | 0.8310 |
158
- | 0.089 | 88.9231 | 289 | 0.4942 | 0.8310 |
159
- | 0.0919 | 89.8462 | 292 | 0.4928 | 0.8310 |
160
- | 0.0919 | 90.7692 | 295 | 0.4941 | 0.8169 |
161
- | 0.0919 | 92.0 | 299 | 0.4964 | 0.8310 |
162
- | 0.1044 | 92.3077 | 300 | 0.4967 | 0.8310 |
163
 
164
 
165
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.8309859154929577
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [facebook/deit-base-distilled-patch16-224](https://huggingface.co/facebook/deit-base-distilled-patch16-224) on the imagefolder dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.5407
36
+ - Accuracy: 0.8310
37
 
38
  ## Model description
39
 
 
67
 
68
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
69
  |:-------------:|:-------:|:----:|:---------------:|:--------:|
70
+ | No log | 0.9231 | 3 | 0.7425 | 0.4930 |
71
+ | No log | 1.8462 | 6 | 0.7193 | 0.5634 |
72
+ | No log | 2.7692 | 9 | 0.6808 | 0.5915 |
73
+ | 0.7309 | 4.0 | 13 | 0.6253 | 0.5915 |
74
+ | 0.7309 | 4.9231 | 16 | 0.6022 | 0.6761 |
75
+ | 0.7309 | 5.8462 | 19 | 0.5589 | 0.6479 |
76
+ | 0.6449 | 6.7692 | 22 | 0.5559 | 0.7183 |
77
+ | 0.6449 | 8.0 | 26 | 0.4910 | 0.7183 |
78
+ | 0.6449 | 8.9231 | 29 | 0.4996 | 0.7606 |
79
+ | 0.5494 | 9.8462 | 32 | 0.4903 | 0.7324 |
80
+ | 0.5494 | 10.7692 | 35 | 0.7331 | 0.6620 |
81
+ | 0.5494 | 12.0 | 39 | 0.5053 | 0.6901 |
82
+ | 0.4793 | 12.9231 | 42 | 0.4781 | 0.7324 |
83
+ | 0.4793 | 13.8462 | 45 | 0.4997 | 0.7465 |
84
+ | 0.4793 | 14.7692 | 48 | 0.5197 | 0.7465 |
85
+ | 0.4327 | 16.0 | 52 | 0.5339 | 0.7606 |
86
+ | 0.4327 | 16.9231 | 55 | 0.4475 | 0.7606 |
87
+ | 0.4327 | 17.8462 | 58 | 0.4808 | 0.7887 |
88
+ | 0.3747 | 18.7692 | 61 | 0.4868 | 0.7465 |
89
+ | 0.3747 | 20.0 | 65 | 0.6206 | 0.7042 |
90
+ | 0.3747 | 20.9231 | 68 | 0.5271 | 0.7324 |
91
+ | 0.3474 | 21.8462 | 71 | 0.5227 | 0.6901 |
92
+ | 0.3474 | 22.7692 | 74 | 0.5078 | 0.7465 |
93
+ | 0.3474 | 24.0 | 78 | 0.5842 | 0.6901 |
94
+ | 0.267 | 24.9231 | 81 | 0.6015 | 0.7183 |
95
+ | 0.267 | 25.8462 | 84 | 0.6533 | 0.7606 |
96
+ | 0.267 | 26.7692 | 87 | 0.5764 | 0.7324 |
97
+ | 0.2333 | 28.0 | 91 | 0.4862 | 0.8028 |
98
+ | 0.2333 | 28.9231 | 94 | 0.6233 | 0.7183 |
99
+ | 0.2333 | 29.8462 | 97 | 0.7549 | 0.7465 |
100
+ | 0.2635 | 30.7692 | 100 | 0.4890 | 0.8028 |
101
+ | 0.2635 | 32.0 | 104 | 0.5616 | 0.8028 |
102
+ | 0.2635 | 32.9231 | 107 | 0.5501 | 0.7606 |
103
+ | 0.192 | 33.8462 | 110 | 0.4845 | 0.8169 |
104
+ | 0.192 | 34.7692 | 113 | 0.5116 | 0.7887 |
105
+ | 0.192 | 36.0 | 117 | 0.5017 | 0.8169 |
106
+ | 0.1763 | 36.9231 | 120 | 0.4798 | 0.7887 |
107
+ | 0.1763 | 37.8462 | 123 | 0.5328 | 0.7746 |
108
+ | 0.1763 | 38.7692 | 126 | 0.6393 | 0.7606 |
109
+ | 0.172 | 40.0 | 130 | 0.5481 | 0.7887 |
110
+ | 0.172 | 40.9231 | 133 | 0.5867 | 0.7887 |
111
+ | 0.172 | 41.8462 | 136 | 0.9223 | 0.7042 |
112
+ | 0.172 | 42.7692 | 139 | 0.6262 | 0.8028 |
113
+ | 0.1832 | 44.0 | 143 | 0.6091 | 0.7746 |
114
+ | 0.1832 | 44.9231 | 146 | 0.5837 | 0.7606 |
115
+ | 0.1832 | 45.8462 | 149 | 0.5465 | 0.7606 |
116
+ | 0.1641 | 46.7692 | 152 | 0.6745 | 0.7746 |
117
+ | 0.1641 | 48.0 | 156 | 0.5398 | 0.7887 |
118
+ | 0.1641 | 48.9231 | 159 | 0.5387 | 0.8169 |
119
+ | 0.1366 | 49.8462 | 162 | 0.5737 | 0.8028 |
120
+ | 0.1366 | 50.7692 | 165 | 0.5255 | 0.8310 |
121
+ | 0.1366 | 52.0 | 169 | 0.6486 | 0.7887 |
122
+ | 0.149 | 52.9231 | 172 | 0.5404 | 0.8169 |
123
+ | 0.149 | 53.8462 | 175 | 0.5655 | 0.8169 |
124
+ | 0.149 | 54.7692 | 178 | 0.6121 | 0.8028 |
125
+ | 0.1196 | 56.0 | 182 | 0.6182 | 0.8310 |
126
+ | 0.1196 | 56.9231 | 185 | 0.6175 | 0.8028 |
127
+ | 0.1196 | 57.8462 | 188 | 0.5921 | 0.8310 |
128
+ | 0.1202 | 58.7692 | 191 | 0.5953 | 0.8169 |
129
+ | 0.1202 | 60.0 | 195 | 0.6065 | 0.8028 |
130
+ | 0.1202 | 60.9231 | 198 | 0.5448 | 0.8310 |
131
+ | 0.1289 | 61.8462 | 201 | 0.5258 | 0.8451 |
132
+ | 0.1289 | 62.7692 | 204 | 0.5440 | 0.8310 |
133
+ | 0.1289 | 64.0 | 208 | 0.6082 | 0.8169 |
134
+ | 0.1262 | 64.9231 | 211 | 0.6358 | 0.8169 |
135
+ | 0.1262 | 65.8462 | 214 | 0.5982 | 0.8169 |
136
+ | 0.1262 | 66.7692 | 217 | 0.5850 | 0.8451 |
137
+ | 0.124 | 68.0 | 221 | 0.5733 | 0.8169 |
138
+ | 0.124 | 68.9231 | 224 | 0.5631 | 0.8028 |
139
+ | 0.124 | 69.8462 | 227 | 0.5375 | 0.8310 |
140
+ | 0.1208 | 70.7692 | 230 | 0.5158 | 0.8169 |
141
+ | 0.1208 | 72.0 | 234 | 0.5431 | 0.8169 |
142
+ | 0.1208 | 72.9231 | 237 | 0.5099 | 0.8451 |
143
+ | 0.1126 | 73.8462 | 240 | 0.5803 | 0.7887 |
144
+ | 0.1126 | 74.7692 | 243 | 0.5416 | 0.8028 |
145
+ | 0.1126 | 76.0 | 247 | 0.5835 | 0.8451 |
146
+ | 0.1089 | 76.9231 | 250 | 0.5923 | 0.8310 |
147
+ | 0.1089 | 77.8462 | 253 | 0.5228 | 0.8310 |
148
+ | 0.1089 | 78.7692 | 256 | 0.5467 | 0.8310 |
149
+ | 0.0965 | 80.0 | 260 | 0.5156 | 0.8732 |
150
+ | 0.0965 | 80.9231 | 263 | 0.5082 | 0.8451 |
151
+ | 0.0965 | 81.8462 | 266 | 0.5071 | 0.8451 |
152
+ | 0.0965 | 82.7692 | 269 | 0.5070 | 0.8592 |
153
+ | 0.0947 | 84.0 | 273 | 0.5268 | 0.8592 |
154
+ | 0.0947 | 84.9231 | 276 | 0.5283 | 0.8592 |
155
+ | 0.0947 | 85.8462 | 279 | 0.5261 | 0.8451 |
156
+ | 0.0751 | 86.7692 | 282 | 0.5286 | 0.8310 |
157
+ | 0.0751 | 88.0 | 286 | 0.5415 | 0.8310 |
158
+ | 0.0751 | 88.9231 | 289 | 0.5511 | 0.8310 |
159
+ | 0.0912 | 89.8462 | 292 | 0.5542 | 0.8310 |
160
+ | 0.0912 | 90.7692 | 295 | 0.5464 | 0.8310 |
161
+ | 0.0912 | 92.0 | 299 | 0.5410 | 0.8310 |
162
+ | 0.104 | 92.3077 | 300 | 0.5407 | 0.8310 |
163
 
164
 
165
  ### Framework versions
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a203c442b010cbe3198ed6844c5813385f67bc31e0d7a4ab8850ecd82d65e3df
3
  size 343230408
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac272742ff6de56ee9a12e274a29daa198d20fde70809e1fc919220b925cb38d
3
  size 343230408
runs/May22_06-48-30_defc3061f818/events.out.tfevents.1716360511.defc3061f818.1801.2 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:7efdd95985397ce6b63033713404281014a2bd69f48836c21a363d4e5da3c881
3
- size 40464
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:51d1ba85fca833496e0e4ce4473d40b0b849a25d225aab64d6638c00d9c49ccf
3
+ size 41352