File size: 1,997 Bytes
7ca1752 8d30ad4 7ca1752 f2d2723 7ca1752 8d30ad4 7ca1752 8d30ad4 faf9844 7ca1752 2818904 7ca1752 faf9844 8d30ad4 faf9844 79b0159 8d30ad4 7ca1752 f316d62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: layoutlmv3_document_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3_document_classification
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6107
- Accuracy: 0.8859
- F1: 0.8805
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2618 | 0.5 | 183 | 0.6160 | 0.8727 | 0.8669 |
| 0.2567 | 1.0 | 366 | 0.6154 | 0.8768 | 0.8695 |
| 0.2371 | 1.5 | 549 | 0.6250 | 0.875 | 0.8694 |
| 0.1975 | 2.0 | 732 | 0.6183 | 0.8823 | 0.8772 |
| 0.1882 | 2.5 | 915 | 0.6142 | 0.8837 | 0.8783 |
| 0.1846 | 3.0 | 1098 | 0.6107 | 0.8859 | 0.8805 |
### Framework versions
- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1
|