File size: 1,997 Bytes
7ca1752
 
 
 
 
 
8d30ad4
 
 
7ca1752
 
 
 
 
 
 
 
 
 
f2d2723
7ca1752
8d30ad4
 
 
7ca1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d30ad4
faf9844
 
7ca1752
2818904
7ca1752
faf9844
8d30ad4
faf9844
79b0159
8d30ad4
 
 
 
 
 
 
 
 
 
 
 
7ca1752
 
f316d62
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: layoutlmv3_document_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3_document_classification

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6107
- Accuracy: 0.8859
- F1: 0.8805

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 3
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 0.2618        | 0.5   | 183  | 0.6160          | 0.8727   | 0.8669 |
| 0.2567        | 1.0   | 366  | 0.6154          | 0.8768   | 0.8695 |
| 0.2371        | 1.5   | 549  | 0.6250          | 0.875    | 0.8694 |
| 0.1975        | 2.0   | 732  | 0.6183          | 0.8823   | 0.8772 |
| 0.1882        | 2.5   | 915  | 0.6142          | 0.8837   | 0.8783 |
| 0.1846        | 3.0   | 1098 | 0.6107          | 0.8859   | 0.8805 |


### Framework versions

- Transformers 4.50.0
- Pytorch 2.6.0+cu124
- Datasets 3.4.1
- Tokenizers 0.21.1