File size: 2,992 Bytes
7ca1752 79b0159 7ca1752 f2d2723 7ca1752 faf9844 7ca1752 faf9844 7ca1752 2818904 7ca1752 faf9844 79b0159 faf9844 79b0159 7ca1752 faf9844 f2d2723 7ca1752 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: layoutlmv3_document_classification
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3_document_classification
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6852
- Accuracy: 0.8480
- F1: 0.8373
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.06
- num_epochs: 10
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
| 4.1758 | 0.5 | 100 | 3.6479 | 0.1754 | 0.0743 |
| 3.1634 | 1.0 | 200 | 2.5074 | 0.4645 | 0.3598 |
| 2.2494 | 1.5 | 300 | 1.9309 | 0.5856 | 0.4950 |
| 1.8063 | 2.0 | 400 | 1.5119 | 0.6817 | 0.6152 |
| 1.458 | 2.5 | 500 | 1.2952 | 0.7126 | 0.6529 |
| 1.2453 | 3.0 | 600 | 1.1118 | 0.7728 | 0.7327 |
| 1.046 | 3.5 | 700 | 1.0126 | 0.7987 | 0.7681 |
| 0.966 | 4.0 | 800 | 0.9096 | 0.8154 | 0.7929 |
| 0.7941 | 4.5 | 900 | 0.8714 | 0.8179 | 0.7972 |
| 0.7796 | 5.0 | 1000 | 0.8019 | 0.8329 | 0.8126 |
| 0.6561 | 5.5 | 1100 | 0.7623 | 0.8421 | 0.8235 |
| 0.6419 | 6.0 | 1200 | 0.7399 | 0.8421 | 0.8262 |
| 0.5715 | 6.5 | 1300 | 0.7127 | 0.8480 | 0.8321 |
| 0.4991 | 7.0 | 1400 | 0.7502 | 0.8396 | 0.8257 |
| 0.4697 | 7.5 | 1500 | 0.7124 | 0.8429 | 0.8305 |
| 0.4618 | 8.0 | 1600 | 0.6976 | 0.8463 | 0.8330 |
| 0.4117 | 8.5 | 1700 | 0.6892 | 0.8546 | 0.8429 |
| 0.4274 | 9.0 | 1800 | 0.6915 | 0.8496 | 0.8390 |
| 0.383 | 9.5 | 1900 | 0.6830 | 0.8471 | 0.8349 |
| 0.3604 | 10.0 | 2000 | 0.6852 | 0.8480 | 0.8373 |
### Framework versions
- Transformers 4.47.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|