File size: 2,758 Bytes
7ca1752
 
 
 
 
 
d1db62d
 
 
7ca1752
 
 
 
 
 
 
 
 
 
f2d2723
7ca1752
d1db62d
 
 
7ca1752
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
86752b0
7ca1752
 
 
2818904
7ca1752
 
2818904
7ca1752
d1db62d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ca1752
 
 
 
f2d2723
7ca1752
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
library_name: transformers
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
model-index:
- name: layoutlmv3_document_classification
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlmv3_document_classification

This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.0329
- Accuracy: 0.8070
- F1: 0.7806

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Accuracy | F1     |
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
| 0.9913        | 0.5587 | 100  | 1.2412          | 0.7790   | 0.7459 |
| 0.9127        | 1.1173 | 200  | 1.2323          | 0.7804   | 0.7466 |
| 0.9307        | 1.6760 | 300  | 1.2167          | 0.7874   | 0.7550 |
| 0.8986        | 2.2346 | 400  | 1.2004          | 0.7888   | 0.7585 |
| 0.8744        | 2.7933 | 500  | 1.1751          | 0.7860   | 0.7572 |
| 0.7765        | 3.3520 | 600  | 1.1382          | 0.7874   | 0.7584 |
| 0.7695        | 3.9106 | 700  | 1.1275          | 0.7930   | 0.7642 |
| 0.7158        | 4.4693 | 800  | 1.0994          | 0.8056   | 0.7788 |
| 0.7015        | 5.0279 | 900  | 1.0844          | 0.7902   | 0.7619 |
| 0.6286        | 5.5866 | 1000 | 1.0828          | 0.8014   | 0.7728 |
| 0.693         | 6.1453 | 1100 | 1.0715          | 0.8042   | 0.7768 |
| 0.6291        | 6.7039 | 1200 | 1.0549          | 0.8070   | 0.7822 |
| 0.6422        | 7.2626 | 1300 | 1.0502          | 0.8168   | 0.7924 |
| 0.609         | 7.8212 | 1400 | 1.0368          | 0.8084   | 0.7828 |
| 0.6022        | 8.3799 | 1500 | 1.0407          | 0.8098   | 0.7824 |
| 0.5783        | 8.9385 | 1600 | 1.0343          | 0.8112   | 0.7843 |
| 0.5635        | 9.4972 | 1700 | 1.0329          | 0.8070   | 0.7806 |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0