update model card README.md
Browse files
README.md
CHANGED
@@ -16,8 +16,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
16 |
|
17 |
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
-
- Loss: 0.
|
20 |
-
- Accuracy:
|
21 |
|
22 |
## Model description
|
23 |
|
@@ -42,20 +42,22 @@ The following hyperparameters were used during training:
|
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
-
- num_epochs:
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
51 |
-
| 0.
|
52 |
-
| 0.
|
53 |
-
| 0.
|
54 |
-
| 0.
|
55 |
-
| 0.
|
56 |
-
| 0.
|
57 |
-
| 0.
|
58 |
-
| 0.
|
|
|
|
|
59 |
|
60 |
|
61 |
### Framework versions
|
|
|
16 |
|
17 |
This model is a fine-tuned version of [hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) on an unknown dataset.
|
18 |
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.6526
|
20 |
+
- Accuracy: 0.55
|
21 |
|
22 |
## Model description
|
23 |
|
|
|
42 |
- seed: 42
|
43 |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 10
|
46 |
|
47 |
### Training results
|
48 |
|
49 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
51 |
+
| 0.7902 | 1.0 | 2 | 0.7168 | 0.45 |
|
52 |
+
| 0.5889 | 2.0 | 4 | 0.7072 | 0.5 |
|
53 |
+
| 0.4923 | 3.0 | 6 | 0.7051 | 0.4 |
|
54 |
+
| 0.4312 | 4.0 | 8 | 0.6980 | 0.5 |
|
55 |
+
| 0.4024 | 5.0 | 10 | 0.6852 | 0.55 |
|
56 |
+
| 0.3531 | 6.0 | 12 | 0.6776 | 0.6 |
|
57 |
+
| 0.3262 | 7.0 | 14 | 0.6674 | 0.6 |
|
58 |
+
| 0.2734 | 8.0 | 16 | 0.6608 | 0.6 |
|
59 |
+
| 0.2593 | 9.0 | 18 | 0.6559 | 0.55 |
|
60 |
+
| 0.2336 | 10.0 | 20 | 0.6526 | 0.55 |
|
61 |
|
62 |
|
63 |
### Framework versions
|