--- library_name: transformers language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Small En Medimix results: [] --- # Whisper Small En Medimix This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the 500 pes_colab 10.6 dataset. It achieves the following results on the evaluation set: - Loss: 0.4537 - Wer: 10.6667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 200 - num_epochs: 8 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0384 | 1.0 | 25 | 0.4705 | 12.2222 | | 0.0375 | 2.0 | 50 | 0.4689 | 12.0 | | 0.0332 | 3.0 | 75 | 0.4666 | 11.0370 | | 0.0293 | 4.0 | 100 | 0.4636 | 11.1111 | | 0.0242 | 5.0 | 125 | 0.4612 | 11.0370 | | 0.0197 | 6.0 | 150 | 0.4586 | 10.9630 | | 0.0152 | 7.0 | 175 | 0.4555 | 10.7407 | | 0.0116 | 8.0 | 200 | 0.4537 | 10.6667 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0