File size: 20,758 Bytes
95a4d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9311e0
 
 
 
 
 
 
 
95a4d4c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9311e0
95a4d4c
 
 
 
 
 
b9311e0
95a4d4c
 
 
 
b9311e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95a4d4c
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
---
license: mit
base_model: microsoft/layoutlm-base-uncased
tags:
- generated_from_trainer
datasets:
- funsd
model-index:
- name: layoutlm-funsd3
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# layoutlm-funsd3

This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8917
- Answer: {'precision': 0.7259507829977628, 'recall': 0.8022249690976514, 'f1': 0.7621843805049912, 'number': 809}
- Header: {'precision': 0.3355263157894737, 'recall': 0.42857142857142855, 'f1': 0.3763837638376384, 'number': 119}
- Question: {'precision': 0.7875, 'recall': 0.828169014084507, 'f1': 0.8073226544622427, 'number': 1065}
- Overall Precision: 0.7304
- Overall Recall: 0.7938
- Overall F1: 0.7608
- Overall Accuracy: 0.7919

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 40
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Answer                                                                                                         | Header                                                                                                      | Question                                                                                                     | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
| 1.9148        | 1.0   | 10   | 1.9348          | {'precision': 0.02721922511034821, 'recall': 0.13720642768850433, 'f1': 0.04542664211172499, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.040596094552929084, 'recall': 0.07417840375586854, 'f1': 0.0524742610428429, 'number': 1065} | 0.0308            | 0.0953         | 0.0466     | 0.1513           |
| 1.9105        | 2.0   | 20   | 1.9240          | {'precision': 0.02663934426229508, 'recall': 0.12855377008652658, 'f1': 0.04413324846170167, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.04175152749490835, 'recall': 0.07699530516431925, 'f1': 0.05414328161109277, 'number': 1065} | 0.0310            | 0.0933         | 0.0466     | 0.1596           |
| 1.8962        | 3.0   | 30   | 1.9059          | {'precision': 0.025634033269702754, 'recall': 0.1161928306551298, 'f1': 0.0420017873100983, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.04310344827586207, 'recall': 0.07981220657276995, 'f1': 0.05597629239380968, 'number': 1065} | 0.0312            | 0.0898         | 0.0464     | 0.1729           |
| 1.8763        | 4.0   | 40   | 1.8818          | {'precision': 0.025390027531355153, 'recall': 0.10259579728059333, 'f1': 0.04070622854340363, 'number': 809}   | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.04250907205806117, 'recall': 0.07699530516431925, 'f1': 0.05477621910487642, 'number': 1065} | 0.0314            | 0.0828         | 0.0456     | 0.1906           |
| 1.8461        | 5.0   | 50   | 1.8523          | {'precision': 0.026613197229310975, 'recall': 0.09023485784919653, 'f1': 0.0411036036036036, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.04662643993417444, 'recall': 0.07981220657276995, 'f1': 0.05886426592797784, 'number': 1065} | 0.0344            | 0.0793         | 0.0480     | 0.2194           |
| 1.816         | 6.0   | 60   | 1.8190          | {'precision': 0.027329749103942653, 'recall': 0.0754017305315204, 'f1': 0.04011838211114765, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.05275779376498801, 'recall': 0.08262910798122065, 'f1': 0.06439809732894256, 'number': 1065} | 0.0381            | 0.0748         | 0.0505     | 0.2467           |
| 1.7864        | 7.0   | 70   | 1.7834          | {'precision': 0.022129186602870814, 'recall': 0.04573547589616811, 'f1': 0.029826682789197905, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.06278026905829596, 'recall': 0.07887323943661972, 'f1': 0.06991260923845194, 'number': 1065} | 0.0402            | 0.0607         | 0.0484     | 0.2767           |
| 1.7409        | 8.0   | 80   | 1.7413          | {'precision': 0.024390243902439025, 'recall': 0.038318912237330034, 'f1': 0.029807692307692306, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.07393715341959335, 'recall': 0.07511737089201878, 'f1': 0.07452258965999067, 'number': 1065} | 0.0471            | 0.0557         | 0.0511     | 0.2975           |
| 1.6984        | 9.0   | 90   | 1.6959          | {'precision': 0.01787487586891758, 'recall': 0.022249690976514216, 'f1': 0.019823788546255508, 'number': 809}  | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.10549943883277217, 'recall': 0.08826291079812207, 'f1': 0.09611451942740287, 'number': 1065} | 0.0590            | 0.0562         | 0.0576     | 0.3175           |
| 1.6582        | 10.0  | 100  | 1.6434          | {'precision': 0.02877697841726619, 'recall': 0.034610630407911, 'f1': 0.031425364758698095, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.1774033696729435, 'recall': 0.168075117370892, 'f1': 0.1726133076181292, 'number': 1065}     | 0.1044            | 0.1039         | 0.1042     | 0.3466           |
| 1.5875        | 11.0  | 110  | 1.5763          | {'precision': 0.04632152588555858, 'recall': 0.0630407911001236, 'f1': 0.05340314136125654, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.23351023502653526, 'recall': 0.2892018779342723, 'f1': 0.25838926174496646, 'number': 1065}  | 0.1483            | 0.1801         | 0.1627     | 0.4021           |
| 1.513         | 12.0  | 120  | 1.4936          | {'precision': 0.06457739791073125, 'recall': 0.08405438813349815, 'f1': 0.07303974221267456, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.29396325459317585, 'recall': 0.42065727699530514, 'f1': 0.3460795674005407, 'number': 1065}  | 0.2002            | 0.2589         | 0.2258     | 0.4569           |
| 1.425         | 13.0  | 130  | 1.3967          | {'precision': 0.08278867102396514, 'recall': 0.09394313967861558, 'f1': 0.08801389693109439, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.36175882744836774, 'recall': 0.5098591549295775, 'f1': 0.4232268121590023, 'number': 1065}   | 0.2559            | 0.3106         | 0.2806     | 0.4954           |
| 1.2919        | 14.0  | 140  | 1.2813          | {'precision': 0.14430379746835442, 'recall': 0.14091470951792337, 'f1': 0.1425891181988743, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.4328882642304989, 'recall': 0.5784037558685446, 'f1': 0.4951768488745981, 'number': 1065}    | 0.3299            | 0.3663         | 0.3471     | 0.5484           |
| 1.187         | 15.0  | 150  | 1.1608          | {'precision': 0.24360699865410498, 'recall': 0.22373300370828184, 'f1': 0.23324742268041238, 'number': 809}    | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.5067567567567568, 'recall': 0.6338028169014085, 'f1': 0.5632040050062578, 'number': 1065}    | 0.4125            | 0.4295         | 0.4208     | 0.5971           |
| 1.0614        | 16.0  | 160  | 1.0322          | {'precision': 0.3975609756097561, 'recall': 0.40296662546353523, 'f1': 0.40024554941682017, 'number': 809}     | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.5522949586155004, 'recall': 0.6892018779342723, 'f1': 0.6131996658312447, 'number': 1065}    | 0.4921            | 0.5319         | 0.5112     | 0.6638           |
| 0.9293        | 17.0  | 170  | 0.9263          | {'precision': 0.5032537960954447, 'recall': 0.5735475896168108, 'f1': 0.5361062969381861, 'number': 809}       | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119}                                                 | {'precision': 0.5963302752293578, 'recall': 0.7323943661971831, 'f1': 0.6573957016434893, 'number': 1065}    | 0.5531            | 0.6242         | 0.5865     | 0.7108           |
| 0.8159        | 18.0  | 180  | 0.8344          | {'precision': 0.5733610822060354, 'recall': 0.681087762669963, 'f1': 0.6225988700564972, 'number': 809}        | {'precision': 0.08, 'recall': 0.03361344537815126, 'f1': 0.047337278106508875, 'number': 119}               | {'precision': 0.6435483870967742, 'recall': 0.7492957746478873, 'f1': 0.6924078091106292, 'number': 1065}    | 0.6011            | 0.6789         | 0.6376     | 0.7407           |
| 0.7244        | 19.0  | 190  | 0.7626          | {'precision': 0.6211312700106724, 'recall': 0.7194066749072929, 'f1': 0.6666666666666666, 'number': 809}       | {'precision': 0.18867924528301888, 'recall': 0.08403361344537816, 'f1': 0.11627906976744187, 'number': 119} | {'precision': 0.6724422442244224, 'recall': 0.7652582159624414, 'f1': 0.7158541941150638, 'number': 1065}    | 0.6390            | 0.7060         | 0.6708     | 0.7603           |
| 0.6506        | 20.0  | 200  | 0.7306          | {'precision': 0.6355748373101953, 'recall': 0.7243510506798516, 'f1': 0.6770652801848642, 'number': 809}       | {'precision': 0.2222222222222222, 'recall': 0.15126050420168066, 'f1': 0.18, 'number': 119}                 | {'precision': 0.66953125, 'recall': 0.8046948356807512, 'f1': 0.7309168443496802, 'number': 1065}            | 0.6399            | 0.7331         | 0.6833     | 0.7771           |
| 0.588         | 21.0  | 210  | 0.6980          | {'precision': 0.6449197860962567, 'recall': 0.7453646477132262, 'f1': 0.6915137614678899, 'number': 809}       | {'precision': 0.22340425531914893, 'recall': 0.17647058823529413, 'f1': 0.1971830985915493, 'number': 119}  | {'precision': 0.6994171523730225, 'recall': 0.7887323943661971, 'f1': 0.7413945278022949, 'number': 1065}    | 0.6565            | 0.7346         | 0.6933     | 0.7812           |
| 0.552         | 22.0  | 220  | 0.6761          | {'precision': 0.6673819742489271, 'recall': 0.7688504326328801, 'f1': 0.7145318782309018, 'number': 809}       | {'precision': 0.22330097087378642, 'recall': 0.19327731092436976, 'f1': 0.20720720720720723, 'number': 119} | {'precision': 0.713469387755102, 'recall': 0.8206572769953052, 'f1': 0.7633187772925764, 'number': 1065}     | 0.6721            | 0.7622         | 0.7143     | 0.7907           |
| 0.4842        | 23.0  | 230  | 0.6748          | {'precision': 0.6846846846846847, 'recall': 0.7515451174289246, 'f1': 0.7165586328815557, 'number': 809}       | {'precision': 0.25961538461538464, 'recall': 0.226890756302521, 'f1': 0.242152466367713, 'number': 119}     | {'precision': 0.7347789824854045, 'recall': 0.8272300469483568, 'f1': 0.7782685512367491, 'number': 1065}    | 0.6919            | 0.7607         | 0.7247     | 0.7955           |
| 0.4503        | 24.0  | 240  | 0.6768          | {'precision': 0.6757322175732218, 'recall': 0.7985166872682324, 'f1': 0.7320113314447593, 'number': 809}       | {'precision': 0.26732673267326734, 'recall': 0.226890756302521, 'f1': 0.24545454545454548, 'number': 119}   | {'precision': 0.7468460891505467, 'recall': 0.8338028169014085, 'f1': 0.7879325643300797, 'number': 1065}    | 0.6950            | 0.7832         | 0.7365     | 0.7949           |
| 0.4104        | 25.0  | 250  | 0.6905          | {'precision': 0.6844444444444444, 'recall': 0.761433868974042, 'f1': 0.7208894090111176, 'number': 809}        | {'precision': 0.2689075630252101, 'recall': 0.2689075630252101, 'f1': 0.2689075630252101, 'number': 119}    | {'precision': 0.7474747474747475, 'recall': 0.8338028169014085, 'f1': 0.788282290279627, 'number': 1065}     | 0.6960            | 0.7707         | 0.7314     | 0.7921           |
| 0.3846        | 26.0  | 260  | 0.6857          | {'precision': 0.6980920314253648, 'recall': 0.7688504326328801, 'f1': 0.731764705882353, 'number': 809}        | {'precision': 0.2773109243697479, 'recall': 0.2773109243697479, 'f1': 0.2773109243697479, 'number': 119}    | {'precision': 0.7468566638725901, 'recall': 0.8366197183098592, 'f1': 0.7891939769707705, 'number': 1065}    | 0.7018            | 0.7757         | 0.7369     | 0.7966           |
| 0.3533        | 27.0  | 270  | 0.6714          | {'precision': 0.6938997821350763, 'recall': 0.7873918417799752, 'f1': 0.7376954255935148, 'number': 809}       | {'precision': 0.2767857142857143, 'recall': 0.2605042016806723, 'f1': 0.2683982683982684, 'number': 119}    | {'precision': 0.7580645161290323, 'recall': 0.8384976525821596, 'f1': 0.7962550156041017, 'number': 1065}    | 0.7070            | 0.7832         | 0.7432     | 0.7971           |
| 0.3271        | 28.0  | 280  | 0.7090          | {'precision': 0.6864035087719298, 'recall': 0.7737948084054388, 'f1': 0.7274840209180709, 'number': 809}       | {'precision': 0.2706766917293233, 'recall': 0.3025210084033613, 'f1': 0.28571428571428564, 'number': 119}   | {'precision': 0.7462562396006656, 'recall': 0.8422535211267606, 'f1': 0.7913542126157919, 'number': 1065}    | 0.6938            | 0.7822         | 0.7354     | 0.7929           |
| 0.3031        | 29.0  | 290  | 0.7212          | {'precision': 0.7275943396226415, 'recall': 0.7626699629171817, 'f1': 0.7447193723596861, 'number': 809}       | {'precision': 0.3130434782608696, 'recall': 0.3025210084033613, 'f1': 0.3076923076923077, 'number': 119}    | {'precision': 0.7788546255506608, 'recall': 0.8300469483568075, 'f1': 0.8036363636363637, 'number': 1065}    | 0.7326            | 0.7712         | 0.7514     | 0.7949           |
| 0.2723        | 30.0  | 300  | 0.7351          | {'precision': 0.7036637931034483, 'recall': 0.8071693448702101, 'f1': 0.7518710420264824, 'number': 809}       | {'precision': 0.2740740740740741, 'recall': 0.31092436974789917, 'f1': 0.29133858267716534, 'number': 119}  | {'precision': 0.7715289982425307, 'recall': 0.8244131455399061, 'f1': 0.7970948706309579, 'number': 1065}    | 0.7124            | 0.7868         | 0.7477     | 0.7982           |
| 0.2589        | 31.0  | 310  | 0.7356          | {'precision': 0.6878914405010439, 'recall': 0.8145859085290482, 'f1': 0.745897000565931, 'number': 809}        | {'precision': 0.30973451327433627, 'recall': 0.29411764705882354, 'f1': 0.3017241379310345, 'number': 119}  | {'precision': 0.7708688245315162, 'recall': 0.8497652582159625, 'f1': 0.8083966056275124, 'number': 1065}    | 0.7122            | 0.8023         | 0.7546     | 0.7948           |
| 0.2305        | 32.0  | 320  | 0.7378          | {'precision': 0.7220956719817767, 'recall': 0.7836835599505563, 'f1': 0.7516301126259632, 'number': 809}       | {'precision': 0.32432432432432434, 'recall': 0.3025210084033613, 'f1': 0.31304347826086953, 'number': 119}  | {'precision': 0.7734711455641688, 'recall': 0.8431924882629108, 'f1': 0.8068283917340521, 'number': 1065}    | 0.7293            | 0.7868         | 0.7569     | 0.7983           |
| 0.2114        | 33.0  | 330  | 0.7546          | {'precision': 0.7093275488069414, 'recall': 0.8084054388133498, 'f1': 0.7556325823223571, 'number': 809}       | {'precision': 0.3392857142857143, 'recall': 0.31932773109243695, 'f1': 0.32900432900432897, 'number': 119}  | {'precision': 0.7737162750217581, 'recall': 0.8347417840375587, 'f1': 0.803071364046974, 'number': 1065}     | 0.7242            | 0.7933         | 0.7572     | 0.7987           |
| 0.1921        | 34.0  | 340  | 0.7701          | {'precision': 0.724669603524229, 'recall': 0.8133498145859085, 'f1': 0.7664531158998252, 'number': 809}        | {'precision': 0.2980132450331126, 'recall': 0.37815126050420167, 'f1': 0.33333333333333337, 'number': 119}  | {'precision': 0.7862939585211902, 'recall': 0.8187793427230047, 'f1': 0.8022079116835327, 'number': 1065}    | 0.7265            | 0.7903         | 0.7570     | 0.7991           |
| 0.1791        | 35.0  | 350  | 0.8101          | {'precision': 0.7331812998859749, 'recall': 0.7948084054388134, 'f1': 0.7627520759193357, 'number': 809}       | {'precision': 0.31724137931034485, 'recall': 0.3865546218487395, 'f1': 0.3484848484848485, 'number': 119}   | {'precision': 0.7892416225749559, 'recall': 0.8403755868544601, 'f1': 0.814006366530241, 'number': 1065}     | 0.7347            | 0.7948         | 0.7636     | 0.7955           |
| 0.1607        | 36.0  | 360  | 0.7987          | {'precision': 0.7369020501138952, 'recall': 0.799752781211372, 'f1': 0.7670420865441612, 'number': 809}        | {'precision': 0.31690140845070425, 'recall': 0.37815126050420167, 'f1': 0.3448275862068965, 'number': 119}  | {'precision': 0.784121320249777, 'recall': 0.8253521126760563, 'f1': 0.8042086001829827, 'number': 1065}     | 0.7338            | 0.7883         | 0.7600     | 0.8035           |
| 0.145         | 37.0  | 370  | 0.8154          | {'precision': 0.7079741379310345, 'recall': 0.8121137206427689, 'f1': 0.7564766839378237, 'number': 809}       | {'precision': 0.3248407643312102, 'recall': 0.42857142857142855, 'f1': 0.3695652173913043, 'number': 119}   | {'precision': 0.7934782608695652, 'recall': 0.8225352112676056, 'f1': 0.8077455048409405, 'number': 1065}    | 0.7236            | 0.7948         | 0.7575     | 0.8013           |
| 0.139         | 38.0  | 380  | 0.8250          | {'precision': 0.7334083239595051, 'recall': 0.8059332509270705, 'f1': 0.767962308598351, 'number': 809}        | {'precision': 0.3333333333333333, 'recall': 0.4117647058823529, 'f1': 0.36842105263157887, 'number': 119}   | {'precision': 0.7953110910730388, 'recall': 0.828169014084507, 'f1': 0.8114075436982521, 'number': 1065}     | 0.7380            | 0.7943         | 0.7651     | 0.8062           |
| 0.1266        | 39.0  | 390  | 0.8796          | {'precision': 0.762962962962963, 'recall': 0.7639060568603214, 'f1': 0.7634342186534898, 'number': 809}        | {'precision': 0.34591194968553457, 'recall': 0.46218487394957986, 'f1': 0.39568345323741, 'number': 119}    | {'precision': 0.7884267631103075, 'recall': 0.8187793427230047, 'f1': 0.8033164440350069, 'number': 1065}    | 0.7446            | 0.7752         | 0.7596     | 0.7989           |
| 0.1147        | 40.0  | 400  | 0.8917          | {'precision': 0.7259507829977628, 'recall': 0.8022249690976514, 'f1': 0.7621843805049912, 'number': 809}       | {'precision': 0.3355263157894737, 'recall': 0.42857142857142855, 'f1': 0.3763837638376384, 'number': 119}   | {'precision': 0.7875, 'recall': 0.828169014084507, 'f1': 0.8073226544622427, 'number': 1065}                 | 0.7304            | 0.7938         | 0.7608     | 0.7919           |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1