--- library_name: transformers license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer metrics: - wer model-index: - name: whisper_amharic results: [] --- # whisper_amharic This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6776 - Wer: 3.06 - Cer: 3.1294 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 4 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:| | 2.2053 | 0.5 | 20 | 1.9974 | 4.5933 | 3.3748 | | 1.8705 | 1.0 | 40 | 1.8153 | 3.2333 | 3.0812 | | 1.7553 | 1.5 | 60 | 1.7752 | 1.7267 | 2.8164 | | 1.7049 | 2.0 | 80 | 1.7236 | 3.4533 | 3.1455 | | 1.6274 | 2.5 | 100 | 1.6928 | 2.5267 | 2.9721 | | 1.5948 | 3.0 | 120 | 1.6776 | 3.06 | 3.1294 | ### Framework versions - Transformers 4.48.2 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0