Update to Sentis 2.1.1
Browse filesHi, Thank you for uploading the model and code!
I was messing around with Sentis and updated the code to make it run on the newer version.
- Update code to be compatible with Sentis 2.1.1 (Tested in Unity 6000.0.29f1)
- Replaced `TokenizerUtils` and `Phi3InputFormatter` which seem to be missing in the original code
- Phi3Claude.cs +161 -134
Phi3Claude.cs
CHANGED
|
@@ -1,134 +1,161 @@
|
|
| 1 |
-
using UnityEngine;
|
| 2 |
-
using Microsoft.ML.Tokenizers;
|
| 3 |
-
using Unity.Sentis;
|
| 4 |
-
using System.IO;
|
| 5 |
-
using System.Linq;
|
| 6 |
-
using System.Collections.Generic;
|
| 7 |
-
using System.Collections;
|
| 8 |
-
|
| 9 |
-
public class Phi3Claude : MonoBehaviour
|
| 10 |
-
{
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
int
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
private void Start()
|
| 24 |
-
{
|
| 25 |
-
var tokenizerModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/tokenizer.model");
|
| 26 |
-
var sentisModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/model_Uint8.sentis");
|
| 27 |
-
var configPath = Path.Combine(Application.streamingAssetsPath, "Phi35/generation_config.json");
|
| 28 |
-
|
| 29 |
-
var model = ModelLoader.Load(sentisModelPath);
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
using UnityEngine;
|
| 2 |
+
using Microsoft.ML.Tokenizers;
|
| 3 |
+
using Unity.Sentis;
|
| 4 |
+
using System.IO;
|
| 5 |
+
using System.Linq;
|
| 6 |
+
using System.Collections.Generic;
|
| 7 |
+
using System.Collections;
|
| 8 |
+
|
| 9 |
+
public class Phi3Claude : MonoBehaviour
|
| 10 |
+
{
|
| 11 |
+
Worker worker_model;
|
| 12 |
+
Worker worker_decoding;
|
| 13 |
+
LlamaTokenizer tokenizer;
|
| 14 |
+
|
| 15 |
+
List<int> tokens = new();
|
| 16 |
+
Tensor<int> inputTensor, attentionMaskTensor, positionIdsTensor;
|
| 17 |
+
Tensor<float> outputLogits;
|
| 18 |
+
Tensor<int> argMaxTensor;
|
| 19 |
+
|
| 20 |
+
int maxTokens = 100; // Maximum number of tokens to generate
|
| 21 |
+
List<int> eosTokens; // End of sequence tokens
|
| 22 |
+
|
| 23 |
+
private void Start()
|
| 24 |
+
{
|
| 25 |
+
var tokenizerModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/tokenizer.model");
|
| 26 |
+
var sentisModelPath = Path.Combine(Application.streamingAssetsPath, "Phi35/model_Uint8.sentis");
|
| 27 |
+
var configPath = Path.Combine(Application.streamingAssetsPath, "Phi35/generation_config.json");
|
| 28 |
+
|
| 29 |
+
var model = ModelLoader.Load(sentisModelPath);
|
| 30 |
+
var vocab_size = 32064;
|
| 31 |
+
// Create a model that does greedy decoding
|
| 32 |
+
FunctionalGraph graph = new FunctionalGraph();
|
| 33 |
+
FunctionalTensor logits = graph.AddInput<float>(new DynamicTensorShape(1,-1,vocab_size));
|
| 34 |
+
FunctionalTensor argMax = Functional.ArgMax(logits, 2, false);
|
| 35 |
+
Model greedyModel = graph.Compile(argMax);
|
| 36 |
+
|
| 37 |
+
worker_model = new Worker(model, BackendType.GPUCompute);
|
| 38 |
+
worker_decoding = new Worker(greedyModel, BackendType.GPUCompute);
|
| 39 |
+
// Manually set from added_tokens.json
|
| 40 |
+
Dictionary<string, int> specialTokens = new()
|
| 41 |
+
{
|
| 42 |
+
{ "<|assistant|>", 32001 },
|
| 43 |
+
{ "<|endoftext|>", 32000 },
|
| 44 |
+
{ "<|end|>", 32007 },
|
| 45 |
+
{ "<|placeholder1|>", 32002 },
|
| 46 |
+
{ "<|placeholder2|>", 32003 },
|
| 47 |
+
{ "<|placeholder3|>", 32004 },
|
| 48 |
+
{ "<|placeholder4|>", 32005 },
|
| 49 |
+
{ "<|placeholder5|>", 32008 },
|
| 50 |
+
{ "<|placeholder6|>", 32009 },
|
| 51 |
+
{ "<|system|>", 32006 },
|
| 52 |
+
{ "<|user|>", 32010 }
|
| 53 |
+
};
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
using (Stream tokenizerModelStream = new FileStream(tokenizerModelPath, FileMode.Open, FileAccess.Read))
|
| 57 |
+
{
|
| 58 |
+
tokenizer = LlamaTokenizer.Create(
|
| 59 |
+
tokenizerModelStream,
|
| 60 |
+
addBeginOfSentence: true,
|
| 61 |
+
addEndOfSentence: false,
|
| 62 |
+
specialTokens: specialTokens
|
| 63 |
+
);
|
| 64 |
+
}
|
| 65 |
+
|
| 66 |
+
// Manually set from generation_config.json
|
| 67 |
+
eosTokens = new(){32007, 32001, 32000};
|
| 68 |
+
|
| 69 |
+
Generate("What is the capital of France?");
|
| 70 |
+
}
|
| 71 |
+
|
| 72 |
+
public void Generate(string userPrompt, string systemPrompt = "You are a helpful assistant.")
|
| 73 |
+
{
|
| 74 |
+
string completePrompt = $@"<|system|>
|
| 75 |
+
{systemPrompt}<|end|>
|
| 76 |
+
<|user|>
|
| 77 |
+
{userPrompt}<|end|>
|
| 78 |
+
<|assistant|>";
|
| 79 |
+
Debug.Log("Complete prompt : " + completePrompt);
|
| 80 |
+
|
| 81 |
+
int[] inputIds = tokenizer.EncodeToIds(completePrompt).ToArray();
|
| 82 |
+
Debug.Log($"Tokenized input: [{string.Join(", ", inputIds)}]");
|
| 83 |
+
Debug.Log($"Decoded tokens: [{string.Join(", ", tokenizer.Decode(inputIds, true))}]");
|
| 84 |
+
|
| 85 |
+
tokens.Clear();
|
| 86 |
+
tokens.AddRange(inputIds);
|
| 87 |
+
|
| 88 |
+
StartCoroutine(GenerateSequence());
|
| 89 |
+
}
|
| 90 |
+
|
| 91 |
+
private IEnumerator GenerateSequence()
|
| 92 |
+
{
|
| 93 |
+
for (int i = 0; i < maxTokens; i++)
|
| 94 |
+
{
|
| 95 |
+
RefreshTensors(tokens.ToArray());
|
| 96 |
+
|
| 97 |
+
worker_model.SetInput("input_ids", inputTensor);
|
| 98 |
+
worker_model.SetInput("attention_mask", attentionMaskTensor);
|
| 99 |
+
worker_model.SetInput("position_ids", positionIdsTensor);
|
| 100 |
+
worker_model.Schedule(); // > 15ms (/!\ should be async)
|
| 101 |
+
|
| 102 |
+
outputLogits = worker_model.PeekOutput("logits") as Tensor<float>; // Async
|
| 103 |
+
outputLogits.ReadbackRequest(); // Async
|
| 104 |
+
|
| 105 |
+
yield return outputLogits.IsReadbackRequestDone(); // 236 ms
|
| 106 |
+
|
| 107 |
+
tokens.Add(ProcessLogits()); // > 200ms
|
| 108 |
+
|
| 109 |
+
int nextToken = tokens[tokens.Count - 1];
|
| 110 |
+
|
| 111 |
+
CleanupTensors();
|
| 112 |
+
|
| 113 |
+
if (eosTokens.Contains(nextToken))
|
| 114 |
+
break;
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
string generatedText = tokenizer.Decode(tokens.ToArray(), true); // 0 ms
|
| 118 |
+
Debug.Log($"Generated sequence: {generatedText}");
|
| 119 |
+
}
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
private int ProcessLogits()
|
| 123 |
+
{
|
| 124 |
+
worker_decoding.SetInput(0, outputLogits);
|
| 125 |
+
worker_decoding.Schedule();
|
| 126 |
+
argMaxTensor = worker_decoding.PeekOutput() as Tensor<int>;
|
| 127 |
+
argMaxTensor.ReadbackRequest();
|
| 128 |
+
argMaxTensor.IsReadbackRequestDone();
|
| 129 |
+
|
| 130 |
+
var argMaxTensorArray = argMaxTensor.DownloadToArray(); // TODO : investigate on why it's long to process
|
| 131 |
+
int nextToken = argMaxTensorArray[outputLogits.shape[1] - 1];
|
| 132 |
+
|
| 133 |
+
Debug.Log($"<color=orange>Next token: [ID = {nextToken}, STR = \"{tokenizer.Decode(new[] { nextToken }, true)}\"]</color>");
|
| 134 |
+
|
| 135 |
+
return nextToken;
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
private void RefreshTensors(int[] ids)
|
| 139 |
+
{
|
| 140 |
+
// Update input tensors with the full context
|
| 141 |
+
inputTensor = new Tensor<int>(new TensorShape(1, ids.Length), ids);
|
| 142 |
+
attentionMaskTensor = new Tensor<int>(new TensorShape(1, ids.Length), Enumerable.Repeat(1, ids.Length).ToArray());
|
| 143 |
+
positionIdsTensor = new Tensor<int>(new TensorShape(1, ids.Length), Enumerable.Range(0, ids.Length).ToArray());
|
| 144 |
+
}
|
| 145 |
+
|
| 146 |
+
private void CleanupTensors()
|
| 147 |
+
{
|
| 148 |
+
inputTensor?.Dispose();
|
| 149 |
+
attentionMaskTensor?.Dispose();
|
| 150 |
+
positionIdsTensor?.Dispose();
|
| 151 |
+
outputLogits?.Dispose();
|
| 152 |
+
argMaxTensor?.Dispose();
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
private void OnDestroy() {
|
| 156 |
+
CleanupTensors();
|
| 157 |
+
|
| 158 |
+
worker_model?.Dispose();
|
| 159 |
+
worker_decoding?.Dispose();
|
| 160 |
+
}
|
| 161 |
+
}
|