Update README.md
Browse files
README.md
CHANGED
@@ -3,197 +3,96 @@ library_name: transformers
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
-
#
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
10 |
|
|
|
11 |
|
12 |
-
##
|
13 |
-
|
14 |
-
### Model Description
|
15 |
-
|
16 |
-
<!-- Provide a longer summary of what this model is. -->
|
17 |
-
|
18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
-
|
20 |
-
- **Developed by:** [More Information Needed]
|
21 |
-
- **Funded by [optional]:** [More Information Needed]
|
22 |
-
- **Shared by [optional]:** [More Information Needed]
|
23 |
-
- **Model type:** [More Information Needed]
|
24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
25 |
-
- **License:** [More Information Needed]
|
26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
-
|
28 |
-
### Model Sources [optional]
|
29 |
-
|
30 |
-
<!-- Provide the basic links for the model. -->
|
31 |
-
|
32 |
-
- **Repository:** [More Information Needed]
|
33 |
-
- **Paper [optional]:** [More Information Needed]
|
34 |
-
- **Demo [optional]:** [More Information Needed]
|
35 |
-
|
36 |
-
## Uses
|
37 |
-
|
38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
-
|
40 |
-
### Direct Use
|
41 |
-
|
42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
-
|
44 |
-
[More Information Needed]
|
45 |
-
|
46 |
-
### Downstream Use [optional]
|
47 |
-
|
48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
-
|
50 |
-
[More Information Needed]
|
51 |
-
|
52 |
-
### Out-of-Scope Use
|
53 |
-
|
54 |
-
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
-
|
56 |
-
[More Information Needed]
|
57 |
-
|
58 |
-
## Bias, Risks, and Limitations
|
59 |
-
|
60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
-
|
62 |
-
[More Information Needed]
|
63 |
-
|
64 |
-
### Recommendations
|
65 |
-
|
66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
-
|
68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
-
|
70 |
-
## How to Get Started with the Model
|
71 |
-
|
72 |
-
Use the code below to get started with the model.
|
73 |
-
|
74 |
-
[More Information Needed]
|
75 |
-
|
76 |
-
## Training Details
|
77 |
-
|
78 |
-
### Training Data
|
79 |
-
|
80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
-
|
82 |
-
[More Information Needed]
|
83 |
-
|
84 |
-
### Training Procedure
|
85 |
-
|
86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
-
|
88 |
-
#### Preprocessing [optional]
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
|
185 |
-
|
186 |
|
187 |
-
[More Information Needed]
|
188 |
|
189 |
-
|
|
|
190 |
|
191 |
-
|
192 |
|
193 |
-
|
|
|
|
|
|
|
194 |
|
195 |
-
|
196 |
|
197 |
-
##
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
[More Information Needed]
|
|
|
3 |
tags: []
|
4 |
---
|
5 |
|
6 |
+
# 🧠 GLiClass Gender Classifier — DeBERTaV3 Uni-Encoder (3-Class)
|
7 |
|
8 |
+
This model is designed for **text classification** in clinical narratives, specifically for determining a patient's **sex or gender**. It was fine-tuned using a **uni-encoder architecture** based on [`microsoft/deberta-v3-small`](https://huggingface.co/microsoft/deberta-v3-small), and outputs one of three labels:
|
9 |
|
10 |
+
- `male`
|
11 |
+
- `female`
|
12 |
+
- `sex undetermined`
|
13 |
|
14 |
+
---
|
15 |
|
16 |
+
## 🧪 Task
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
+
This is a **multi-class text classification** task over **clinical free-text**. The model predicts the gender of a patient from discharge summaries, case descriptions, or medical notes.
|
19 |
|
|
|
20 |
|
21 |
+
> ⚠️ **It is strongly recommended to keep the labels and the input text in the same language** (e.g., both in Spanish or both in English) to ensure optimal model performance. Mixing languages may reduce accuracy.
|
22 |
+
---
|
23 |
|
24 |
+
## 🧩 Model Architecture
|
25 |
|
26 |
+
- Base: `microsoft/deberta-v3-small`
|
27 |
+
- Architecture: `DebertaV2ForSequenceClassification`
|
28 |
+
- Fine-tuned with a **uni-encoder** setup
|
29 |
+
- 3 output labels
|
30 |
|
31 |
+
---
|
32 |
|
33 |
+
## 🔍 Input Format
|
34 |
+
|
35 |
+
Each input sample must be a JSON object like this:
|
36 |
+
|
37 |
+
```json
|
38 |
+
{
|
39 |
+
"text": "Paciente de 63 años que refería déficit de agudeza visual (AV)...",
|
40 |
+
"all_labels": ["male", "female", "sex undetermined"],
|
41 |
+
"true_labels": ["sex undetermined"]
|
42 |
+
}
|
43 |
+
|
44 |
+
## Usage example
|
45 |
+
import json
|
46 |
+
from transformers import AutoTokenizer
|
47 |
+
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
|
48 |
+
import torch
|
49 |
+
|
50 |
+
device = 0 if torch.cuda.is_available() else -1
|
51 |
+
model_path = "BSC-NLP4BIA/GLiClass-gender-classifier"
|
52 |
+
classification_type = "single-label" # or "multilabel"
|
53 |
+
test_path = "path/to/your/test_data.json"
|
54 |
+
|
55 |
+
print(f"🔄 Loading model from {model_path}...")
|
56 |
+
model = GLiClassModel.from_pretrained(model_path)
|
57 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
58 |
+
model.to(device)
|
59 |
+
|
60 |
+
pipeline = ZeroShotClassificationPipeline(
|
61 |
+
model=model,
|
62 |
+
tokenizer=tokenizer,
|
63 |
+
classification_type=classification_type,
|
64 |
+
device=device
|
65 |
+
)
|
66 |
+
|
67 |
+
with open(test_path, 'r') as f:
|
68 |
+
test_data = json.load(f)
|
69 |
+
|
70 |
+
# 🔍 Automatically infer candidate labels from the dataset
|
71 |
+
all_labels = set()
|
72 |
+
for sample in test_data:
|
73 |
+
all_labels.update(sample["true_labels"])
|
74 |
+
candidate_labels = sorted(all_labels)
|
75 |
+
|
76 |
+
print(f"🧾 Candidate labels inferred: {candidate_labels}")
|
77 |
+
|
78 |
+
results = []
|
79 |
+
|
80 |
+
for sample in test_data:
|
81 |
+
true_labels = sample["true_labels"]
|
82 |
+
output = pipeline(sample["text"], candidate_labels)
|
83 |
+
top_results = output[0]
|
84 |
+
|
85 |
+
predicted_labels = [max(top_results, key=lambda x: x["score"])["label"]]
|
86 |
+
score_dict = {d["label"]: d["score"] for d in top_results}
|
87 |
+
|
88 |
+
entry = {
|
89 |
+
"text": sample["text"],
|
90 |
+
"true_labels": true_labels,
|
91 |
+
"predicted_labels": predicted_labels
|
92 |
+
}
|
93 |
+
# Add scores for each candidate label
|
94 |
+
for label in candidate_labels:
|
95 |
+
entry[f"score_{label}"] = score_dict.get(label, 0.0)
|
96 |
+
|
97 |
+
results.append(entry)
|
98 |
|
|