gvaya-bsc commited on
Commit
3a0c3bf
·
verified ·
1 Parent(s): 67fc691

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +81 -182
README.md CHANGED
@@ -3,197 +3,96 @@ library_name: transformers
3
  tags: []
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
 
 
10
 
 
11
 
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
 
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
 
187
- [More Information Needed]
188
 
189
- ## More Information [optional]
 
190
 
191
- [More Information Needed]
192
 
193
- ## Model Card Authors [optional]
 
 
 
194
 
195
- [More Information Needed]
196
 
197
- ## Model Card Contact
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
198
 
199
- [More Information Needed]
 
3
  tags: []
4
  ---
5
 
6
+ # 🧠 GLiClass Gender Classifier — DeBERTaV3 Uni-Encoder (3-Class)
7
 
8
+ This model is designed for **text classification** in clinical narratives, specifically for determining a patient's **sex or gender**. It was fine-tuned using a **uni-encoder architecture** based on [`microsoft/deberta-v3-small`](https://huggingface.co/microsoft/deberta-v3-small), and outputs one of three labels:
9
 
10
+ - `male`
11
+ - `female`
12
+ - `sex undetermined`
13
 
14
+ ---
15
 
16
+ ## 🧪 Task
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17
 
18
+ This is a **multi-class text classification** task over **clinical free-text**. The model predicts the gender of a patient from discharge summaries, case descriptions, or medical notes.
19
 
 
20
 
21
+ > ⚠️ **It is strongly recommended to keep the labels and the input text in the same language** (e.g., both in Spanish or both in English) to ensure optimal model performance. Mixing languages may reduce accuracy.
22
+ ---
23
 
24
+ ## 🧩 Model Architecture
25
 
26
+ - Base: `microsoft/deberta-v3-small`
27
+ - Architecture: `DebertaV2ForSequenceClassification`
28
+ - Fine-tuned with a **uni-encoder** setup
29
+ - 3 output labels
30
 
31
+ ---
32
 
33
+ ## 🔍 Input Format
34
+
35
+ Each input sample must be a JSON object like this:
36
+
37
+ ```json
38
+ {
39
+ "text": "Paciente de 63 años que refería déficit de agudeza visual (AV)...",
40
+ "all_labels": ["male", "female", "sex undetermined"],
41
+ "true_labels": ["sex undetermined"]
42
+ }
43
+
44
+ ## Usage example
45
+ import json
46
+ from transformers import AutoTokenizer
47
+ from gliclass import GLiClassModel, ZeroShotClassificationPipeline
48
+ import torch
49
+
50
+ device = 0 if torch.cuda.is_available() else -1
51
+ model_path = "BSC-NLP4BIA/GLiClass-gender-classifier"
52
+ classification_type = "single-label" # or "multilabel"
53
+ test_path = "path/to/your/test_data.json"
54
+
55
+ print(f"🔄 Loading model from {model_path}...")
56
+ model = GLiClassModel.from_pretrained(model_path)
57
+ tokenizer = AutoTokenizer.from_pretrained(model_path)
58
+ model.to(device)
59
+
60
+ pipeline = ZeroShotClassificationPipeline(
61
+ model=model,
62
+ tokenizer=tokenizer,
63
+ classification_type=classification_type,
64
+ device=device
65
+ )
66
+
67
+ with open(test_path, 'r') as f:
68
+ test_data = json.load(f)
69
+
70
+ # 🔍 Automatically infer candidate labels from the dataset
71
+ all_labels = set()
72
+ for sample in test_data:
73
+ all_labels.update(sample["true_labels"])
74
+ candidate_labels = sorted(all_labels)
75
+
76
+ print(f"🧾 Candidate labels inferred: {candidate_labels}")
77
+
78
+ results = []
79
+
80
+ for sample in test_data:
81
+ true_labels = sample["true_labels"]
82
+ output = pipeline(sample["text"], candidate_labels)
83
+ top_results = output[0]
84
+
85
+ predicted_labels = [max(top_results, key=lambda x: x["score"])["label"]]
86
+ score_dict = {d["label"]: d["score"] for d in top_results}
87
+
88
+ entry = {
89
+ "text": sample["text"],
90
+ "true_labels": true_labels,
91
+ "predicted_labels": predicted_labels
92
+ }
93
+ # Add scores for each candidate label
94
+ for label in candidate_labels:
95
+ entry[f"score_{label}"] = score_dict.get(label, 0.0)
96
+
97
+ results.append(entry)
98