BSAtlas commited on
Commit
23f01ff
·
verified ·
1 Parent(s): d742e79

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -10
README.md CHANGED
@@ -1,16 +1,52 @@
1
  ---
 
2
  tags:
3
- - text-generation-inference
4
- - transformers
5
- - unsloth
6
- - chat-bot
7
- - llm
8
  license: apache-2.0
9
  language:
10
- - en
11
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
- # Uploaded model
 
 
 
 
 
14
 
15
- - **Developed by:** BSAtlas
16
- - **License:** apache-2.0
 
1
  ---
2
+ name: BSAtlas Model
3
  tags:
4
+ - image-to-text
5
+ - transformers
6
+ - unsloth
7
+ - chat-bot
8
+ - mllm
9
  license: apache-2.0
10
  language:
11
+ - en
12
+ description: |
13
+ The BSAtlas Model is a multimodal large language model designed for advanced text generation and chatbot applications. Developed by BS|MedX, it supports both text and image inputs, or either, enabling rich contextual understanding and versatile responses.
14
+ features:
15
+ - Multimodal capability: Processes both text and image inputs, or either, for versatile applications.
16
+ - Powered by transformers: Built using state-of-the-art transformer architectures.
17
+ - High-performance inference: Optimized for tasks combining natural language understanding and image analysis.
18
+ - Fine-tuned for accuracy: Based on the robust Llama 3.2 11B model, enhanced with multimodal capabilities.
19
+ use_cases:
20
+ - Multimodal chatbot development: Enables AI systems to process and respond based on text, image, or a combination of inputs.
21
+ - Content creation: Generates descriptive text from images or augments text responses with visual context.
22
+ - Healthcare applications: Supports applications like medical image analysis combined with conversational AI.
23
+ model_details:
24
+ developed_by: BS|MedX
25
+ base_model: Llama 3.2 11B
26
+ license: apache-2.0
27
+ languages_supported:
28
+ - English (en)
29
+ installation: |
30
+ To use this model, install the Hugging Face Transformers library and additional dependencies for image processing:
31
+ ```bash
32
+ !pip install transformers pillow torch unsloth datasets
33
+ from transformers import AutoModelForCausalLM, AutoTokenizer
34
+ from PIL import Image
35
+
36
+ # Load tokenizer and model
37
+ tokenizer = AutoTokenizer.from_pretrained("BSAtlas/model-name")
38
+ model = AutoModelForCausalLM.from_pretrained("BSAtlas/model-name")
39
+
40
+ # Example usage for text input
41
+ input_text = "Describe the contents of an image."
42
+ inputs = tokenizer(input_text, return_tensors="pt")
43
+ outputs = model.generate(**inputs)
44
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
45
 
46
+ # Example usage for multimodal input
47
+ image = Image.open("path/to/image.jpg")
48
+ image_features = model.process_image(image) # Replace with your image processing logic
49
+ inputs = tokenizer("Analyze this image:", return_tensors="pt")
50
+ outputs = model.generate(**inputs, image_features=image_features)
51
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
52