File size: 3,959 Bytes
fd0e378 b1c1ae4 fd0e378 b1c1ae4 fd0e378 b1c1ae4 fd0e378 8cb373b b1c1ae4 fd0e378 679ed8c fd0e378 b1c1ae4 fd0e378 8cb373b fd0e378 8cb373b fd0e378 8cb373b fd0e378 8cb373b fd0e378 8cb373b fd0e378 8cb373b fd0e378 8cb373b fd0e378 8cb373b fd0e378 b1c1ae4 fd0e378 b1c1ae4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 |
---
base_model: BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka
library_name: sentence-transformers
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
license: apache-2.0
widget:
- source_sentence: How to discreetly optimize operating expenses?
sentences:
- Strategies for quietly reducing overhead costs
- Subtle ways to cut down on operating expenses
- >-
Implementing technology to save on operating costs without broad
announcements
- Lowering daily business expenses through unnoticed efficiencies
- >-
Minimizing operational expenditures in small businesses without drawing
attention
datasets:
- pszemraj/synthetic-text-similarity
language:
- en
---
# BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
- This model has been further trained from [BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka](https://hf.co/BEE-spoke-data/bert-plus-L8-v1.0-allNLI_matryoshka) on `v3.0` of the `synthetic text similarity` dataset.
- Intended for use in comparing the cosine similarity of longer document embeddings and/or clustering them.
- Matryoshka dims: [768, 512, 256, 128, 64]
An earlier version of this model (on `v1.0` of the dataset) can be found [here](https://huggingface.co/BEE-spoke-data/bert-plus-L8-v1.0-syntheticSTS-4k). TBD which performs better in practical tasks.
## Usage (Sentence-Transformers)
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
Then you can use the model like this:
```python
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k')
embeddings = model.encode(sentences)
print(embeddings)
```
## Usage (HuggingFace Transformers)
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
import torch
from transformers import AutoModel, AutoTokenizer
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[
0
] # First element of model_output contains all token embeddings
input_mask_expanded = (
attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
)
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(
input_mask_expanded.sum(1), min=1e-9
)
# Sentences we want sentence embeddings for
sentences = ["This is an example sentence", "Each sentence is converted"]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained(
"BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k"
)
model = AutoModel.from_pretrained("BEE-spoke-data/bert-plus-L8-v1.0-synthSTSv3-4k")
# Tokenize sentences
encoded_input = tokenizer(
sentences,
padding=True,
truncation=True,
return_tensors="pt",
)
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(
model_output,
encoded_input["attention_mask"],
)
print("Sentence embeddings:")
print(sentence_embeddings)
```
## Training
See training details below.
**Loss**:
`sentence_transformers.losses.MatryoshkaLoss.MatryoshkaLoss` with parameters:
```
{'loss': 'CosineSimilarityLoss', 'matryoshka_dims': [768, 512, 256, 128, 64], 'matryoshka_weights': [1, 1, 1, 1, 1], 'n_dims_per_step': -1}
``` |