Commit
·
9b97fea
1
Parent(s):
8c50400
Update README_zh.md
Browse files- README_zh.md +0 -103
README_zh.md
CHANGED
|
@@ -63,109 +63,6 @@ with torch.no_grad():
|
|
| 63 |
print(out)
|
| 64 |
```
|
| 65 |
|
| 66 |
-
利用[NBCE](https://github.com/bojone/NBCE/tree/main)进行推理
|
| 67 |
-
|
| 68 |
-
```python
|
| 69 |
-
import json
|
| 70 |
-
import torch
|
| 71 |
-
from transformers import AutoTokenizer
|
| 72 |
-
from transformers import AutoModelForCausalLM
|
| 73 |
-
from transformers import TopPLogitsWarper, LogitsProcessorList
|
| 74 |
-
import pdb
|
| 75 |
-
|
| 76 |
-
# 加载tokenizer
|
| 77 |
-
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
| 78 |
-
tokenizer.padding_side = 'left'
|
| 79 |
-
tokenizer.pad_token = tokenizer.unk_token
|
| 80 |
-
|
| 81 |
-
# 加载Aquila模型
|
| 82 |
-
model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16)
|
| 83 |
-
device = torch.device('cuda')
|
| 84 |
-
model.to(device)
|
| 85 |
-
# 加载示例Context
|
| 86 |
-
from cyg_conversation import default_conversation
|
| 87 |
-
|
| 88 |
-
conv = default_conversation.copy()
|
| 89 |
-
contexts = json.load(open('code_text_2.json'))
|
| 90 |
-
|
| 91 |
-
question = "请解释这段程序的功能:"
|
| 92 |
-
batch = []
|
| 93 |
-
conv.append_message(conv.roles[0], question)
|
| 94 |
-
conv.append_message(conv.roles[1], None)
|
| 95 |
-
batch.append(conv.get_prompt())
|
| 96 |
-
# 拼接context和question
|
| 97 |
-
for ci,context in enumerate(contexts):
|
| 98 |
-
conv1 = default_conversation.copy()
|
| 99 |
-
conv1.append_message(conv.roles[0], context+question)
|
| 100 |
-
conv1.append_message(conv.roles[1], None)
|
| 101 |
-
batch.append(conv1.get_prompt())
|
| 102 |
-
print('Context长度分布:', [len(text) for text in batch])
|
| 103 |
-
print('Context总长度:', sum([len(text) for text in batch]))
|
| 104 |
-
|
| 105 |
-
# Top-P截断
|
| 106 |
-
processors = LogitsProcessorList()
|
| 107 |
-
processors.append(TopPLogitsWarper(0.95))
|
| 108 |
-
|
| 109 |
-
# Copied from https://github.com/bojone/NBCE/blob/main/test.py#L51-L106
|
| 110 |
-
@torch.inference_mode()
|
| 111 |
-
def generate(max_tokens):
|
| 112 |
-
"""Naive Bayes-based Context Extension 演示代码
|
| 113 |
-
"""
|
| 114 |
-
inputs = tokenizer(batch, padding='longest', return_tensors='pt').to(device)
|
| 115 |
-
input_ids = inputs.input_ids
|
| 116 |
-
attention_mask = inputs.attention_mask
|
| 117 |
-
|
| 118 |
-
print('input_ids', input_ids.shape)
|
| 119 |
-
past_key_values = None
|
| 120 |
-
n = input_ids.shape[0]
|
| 121 |
-
|
| 122 |
-
for i in range(max_tokens):
|
| 123 |
-
# 模型输出
|
| 124 |
-
outputs = model(input_ids=input_ids,
|
| 125 |
-
attention_mask=attention_mask,
|
| 126 |
-
return_dict=True,
|
| 127 |
-
use_cache=True,
|
| 128 |
-
past_key_values=past_key_values
|
| 129 |
-
)
|
| 130 |
-
past_key_values = outputs.past_key_values
|
| 131 |
-
|
| 132 |
-
# ===== 核心代码开始 =====
|
| 133 |
-
beta, eta = 0.25, 0.1
|
| 134 |
-
logits = outputs.logits[:, -1]
|
| 135 |
-
logits = logits - logits.logsumexp(dim=-1, keepdims=True)
|
| 136 |
-
logits = processors(input_ids, logits)
|
| 137 |
-
entropy = -(logits.exp() * logits.clip(-100, 0)).sum(dim=-1)
|
| 138 |
-
if i > 0:
|
| 139 |
-
entropy[k] -= eta
|
| 140 |
-
k = entropy[1:].argmin() + 1
|
| 141 |
-
logits_max = logits[k]
|
| 142 |
-
logits_uncond = logits[0]
|
| 143 |
-
logits_merged = (1 + beta) * logits_max - beta * logits_uncond
|
| 144 |
-
logits = torch.where(logits_uncond > -100, logits_merged, logits_max)
|
| 145 |
-
# ===== 核心代码结束 =====
|
| 146 |
-
|
| 147 |
-
# 构建分布,采样
|
| 148 |
-
# tau = 1是标准的随机采样,tau->0则是贪心搜索
|
| 149 |
-
# 简单起见,这里没有实现topk、topp截断
|
| 150 |
-
tau = 0.01
|
| 151 |
-
probas = torch.nn.functional.softmax(logits[None] / tau , dim=-1)
|
| 152 |
-
next_tokens = torch.multinomial(probas, num_samples=1).squeeze(1)
|
| 153 |
-
if next_tokens[0] == tokenizer.eos_token_id:
|
| 154 |
-
break
|
| 155 |
-
|
| 156 |
-
ret = tokenizer.batch_decode(next_tokens)
|
| 157 |
-
print(ret[0], flush=True, end='')
|
| 158 |
-
|
| 159 |
-
# prepare for next iteration
|
| 160 |
-
input_ids = next_tokens.unsqueeze(-1).tile(n, 1)
|
| 161 |
-
attention_mask = torch.cat([attention_mask, torch.ones(n, 1, dtype=torch.long, device=device)], dim=-1)
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
if __name__ == '__main__':
|
| 165 |
-
generate(1000)
|
| 166 |
-
|
| 167 |
-
```
|
| 168 |
-
|
| 169 |
|
| 170 |
## 证书/License
|
| 171 |
|
|
|
|
| 63 |
print(out)
|
| 64 |
```
|
| 65 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
## 证书/License
|
| 68 |
|