File size: 1,359 Bytes
908a22e
 
 
 
 
37ad7ab
908a22e
37ad7ab
908a22e
 
37ad7ab
908a22e
 
37ad7ab
 
908a22e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
---
tags:
- autotrain
- text-classification
language:
- en
widget:
- text: I love AutoTrain 🤗
datasets:
- AyoubChLin/autotrain-data-electra-bbc-news
- SetFit/bbc-news
co2_eq_emissions:
  emissions: 1.7151699703484693
metrics:
- accuracy
---

# Model Trained Using AutoTrain

- Problem type: Multi-class Classification
- Model ID: 48940118439
- CO2 Emissions (in grams): 1.7152

## Validation Metrics

- Loss: 0.931
- Accuracy: 0.979
- Macro F1: 0.979
- Micro F1: 0.979
- Weighted F1: 0.979
- Macro Precision: 0.979
- Micro Precision: 0.979
- Weighted Precision: 0.979
- Macro Recall: 0.979
- Micro Recall: 0.979
- Weighted Recall: 0.979


## Usage

You can use cURL to access this model:

```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/AyoubChLin/autotrain-electra-bbc-news-48940118439
```

Or Python API:

```
from transformers import AutoModelForSequenceClassification, AutoTokenizer

model = AutoModelForSequenceClassification.from_pretrained("AyoubChLin/autotrain-electra-bbc-news-48940118439", use_auth_token=True)

tokenizer = AutoTokenizer.from_pretrained("AyoubChLin/autotrain-electra-bbc-news-48940118439", use_auth_token=True)

inputs = tokenizer("I love AutoTrain", return_tensors="pt")

outputs = model(**inputs)
```