File size: 4,368 Bytes
6e933d4
fb114ed
 
6e933d4
 
 
fb114ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e933d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6cd9b5b
6e933d4
 
 
 
 
 
 
 
 
fb114ed
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
---
language:
- en
license: cc-by-nc-4.0
datasets:
- vicgalle/alpaca-gpt4
model-index:
- name: ShortKingv0.1
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 34.22
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AtAndDev/ShortKingv0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 54.59
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AtAndDev/ShortKingv0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 25.78
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AtAndDev/ShortKingv0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 41.64
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AtAndDev/ShortKingv0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 56.04
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AtAndDev/ShortKingv0.1
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 0.45
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=AtAndDev/ShortKingv0.1
      name: Open LLM Leaderboard
---

## Model Overview
Model license: cc-by-nc-4.0<br>
This model is trained based on [EleutherAI/pythia-1.4b-deduped](https://huggingface.co/EleutherAI/pythia-1.4b-deduped) model that is LoRA finetuned on [vicgalle/alpaca-gpt4](https://huggingface.co/datasets/vicgalle/alpaca-gpt4) dataset.<br>

## Prompt Template: `Alpaca`
```
<system_prompt>

### Instruction:
<user_message>

### Response:
<assistant_response>
```

## Intended Use
THIS IS A TEST MODEL, IT IS NOT INTENDED FOR REAL APPLICATIONS BY ANY MEANS. HOWEVER, A NEW MODEL IS COMING IN THE SAME TOPIC.<br>
This model series will be used for small but intense applications.

## Training Details
This model took `2:31:23` to train in QLoRA on a single  `T4`  GPU.<br>
 - *epochs*:  `1`
 - *train batch size*:  `12`
 - *eval batch size*:  `12`
 - *gradient accumulation steps*:  `1`
 - *maximum gradient normal*:  `0.3`
 - *learning rate*:  `2e-4`
 - *weight decay*:  `0.001`
 - *optimizer*:  `paged_adamw_32bit`
 - *learning rate schedule*:  `cosine`
 - *warmup ratio (linear)*:  `0.03`
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_AtAndDev__ShortKingv0.1)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |35.45|
|AI2 Reasoning Challenge (25-Shot)|34.22|
|HellaSwag (10-Shot)              |54.59|
|MMLU (5-Shot)                    |25.78|
|TruthfulQA (0-shot)              |41.64|
|Winogrande (5-shot)              |56.04|
|GSM8k (5-shot)                   | 0.45|