Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- pl
|
4 |
+
license: mit
|
5 |
+
datasets:
|
6 |
+
- Aspik101/translated_polish_alpaca
|
7 |
+
---
|
8 |
+
|
9 |
+
This repo contains a low-rank adapter for LLaMA-7b fit on the [Stanford Alpaca](https://github.com/tatsu-lab/stanford_alpaca) dataset translated to Polish language.
|
10 |
+
|
11 |
+
### How to use (8-bit)
|
12 |
+
|
13 |
+
```python
|
14 |
+
import torch
|
15 |
+
from peft import PeftModel
|
16 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM, GenerationConfig
|
17 |
+
|
18 |
+
tokenizer = LLaMATokenizer.from_pretrained("decapoda-research/llama-13b-hf")
|
19 |
+
|
20 |
+
model = LLaMAForCausalLM.from_pretrained(
|
21 |
+
"decapoda-research/llama-13b-hf",
|
22 |
+
load_in_8bit=True,
|
23 |
+
device_map="auto",
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
model = PeftModel.from_pretrained(model, "Aspik101/polish-alpaca7B-lora")
|
28 |
+
|
29 |
+
|
30 |
+
def get_answer(question, model_version = model):
|
31 |
+
PROMPT =f'''Poniżej znajduje się instrukcja opisująca zadanie. Napisz odpowiedź, która odpowiednio rozwiąrze zadanie.
|
32 |
+
|
33 |
+
### Instruction:
|
34 |
+
{question}
|
35 |
+
|
36 |
+
### Response:
|
37 |
+
'''
|
38 |
+
|
39 |
+
inputs = tokenizer(
|
40 |
+
PROMPT,
|
41 |
+
return_tensors="pt",
|
42 |
+
)
|
43 |
+
input_ids = inputs["input_ids"].cuda()
|
44 |
+
|
45 |
+
generation_config = GenerationConfig(
|
46 |
+
temperature=0.2,
|
47 |
+
top_p=0.95,
|
48 |
+
repetition_penalty=1.15,
|
49 |
+
)
|
50 |
+
print("Generating...")
|
51 |
+
generation_output = model_version.generate(
|
52 |
+
input_ids=input_ids,
|
53 |
+
generation_config=generation_config,
|
54 |
+
return_dict_in_generate=True,
|
55 |
+
output_scores=True,
|
56 |
+
max_new_tokens=128,
|
57 |
+
)
|
58 |
+
|
59 |
+
sentences = " ".join([tokenizer.decode(s) for s in generation_output.sequences])
|
60 |
+
print(sentences.split("Response:\n")[1])
|
61 |
+
|
62 |
+
```
|