Askinkaty commited on
Commit
bd3cf49
·
verified ·
1 Parent(s): 1a0e7ff

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +117 -3
README.md CHANGED
@@ -1,3 +1,117 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ language:
4
+ - ru
5
+ base_model:
6
+ - ai-forever/ruBert-large
7
+ ---
8
+ # Model Card for Model ID
9
+
10
+ Regression model which predicts difficulty score for an input text. Predicted scores can be mapped to CEFT levels.
11
+
12
+
13
+ ## Model Details
14
+
15
+ Frozen BERT-large layers with a regressor on top. Trained on a mix of manually annotated datasets (more details on data will follow).
16
+
17
+
18
+
19
+ ## How to Get Started with the Model
20
+
21
+ Use the code below to get started with the model.
22
+
23
+ ```
24
+ class CustomModel(BertPreTrainedModel):
25
+ def __init__(self, config, load_path=None, use_auth_token: str = None,):
26
+ super().__init__(config)
27
+ self.bert = BertModel(config)
28
+ self.pre_classifier = nn.Linear(config.hidden_size, 128)
29
+ self.dropout = nn.Dropout(0.2)
30
+ self.classifier = nn.Linear(128, 1)
31
+
32
+ # Apply Xavier initialization
33
+ nn.init.xavier_uniform_(self.pre_classifier.weight)
34
+ nn.init.xavier_uniform_(self.classifier.weight)
35
+ if self.pre_classifier.bias is not None:
36
+ nn.init.constant_(self.pre_classifier.bias, 0)
37
+ if self.classifier.bias is not None:
38
+ nn.init.constant_(self.classifier.bias, 0)
39
+
40
+
41
+ def forward(
42
+ self,
43
+ input_ids,
44
+ labels=None,
45
+ attention_mask=None,
46
+ token_type_ids=None,
47
+ position_ids=None,
48
+ ):
49
+ outputs = self.bert(
50
+ input_ids,
51
+ attention_mask=attention_mask,
52
+ token_type_ids=token_type_ids,
53
+ position_ids=position_ids,
54
+ )
55
+
56
+
57
+ pooled_output = outputs[0][:, 0]
58
+ pooled_output = self.pre_classifier(pooled_output)
59
+ pooled_output = nn.ReLU()(pooled_output)
60
+ pooled_output = self.dropout(pooled_output)
61
+ logits = self.classifier(pooled_output)
62
+
63
+ if labels is not None:
64
+ loss_fn = nn.MSELoss()
65
+ loss = loss_fn(logits.view(-1), labels.view(-1))
66
+ return loss, logits
67
+ else:
68
+ return None, logits
69
+
70
+
71
+ tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
72
+ config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
73
+ config.num_labels = 1
74
+
75
+ model = CustomModel(config)
76
+ model.load_state_dict(torch.load(f'{model_path}/pytorch_model.bin'))
77
+
78
+ inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
79
+ inputs = {key: value.to(device) for key, value in inputs.items()}
80
+
81
+ with torch.no_grad():
82
+ _, logits = model(input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], token_type_ids=inputs["token_type_ids"])
83
+
84
+ ```
85
+
86
+ To map to CEFR, use:
87
+ ```
88
+ reg2cl2 = {'1.0': 'A1', '1.5': 'A12', '2.0': 'A2', '2.5': 'A2', '3.0': 'B1', '3.5': 'B12', '4.0': 'B2', '4.5': 'B2', '5.0': 'C1', '5.5': 'C12', '6.0': 'C2', '0.0': 'A1'}
89
+ print("Predicted output (logits):", logits.item(), reg2cl2[str(float(round(logits.item())))])
90
+ ```
91
+
92
+
93
+
94
+ ## Training Details
95
+
96
+
97
+ #### Training Hyperparameters
98
+
99
+ + learning_rate: 3e-4
100
+ + num_train_epochs: 15.0
101
+ + batch_size: 32
102
+ + weight_decay: 0.1
103
+ + adam_beta1: 0.9
104
+ + adam_beta2: 0.99
105
+ + adam_epsilon: 1e-8
106
+ + max_grad_norm: 1.0
107
+ + fp16: True
108
+
109
+
110
+ ## Evaluation
111
+
112
+
113
+
114
+ ## Citation [optional]
115
+
116
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
117
+