--- license: cc-by-nc-4.0 library_name: peft tags: - generated_from_trainer base_model: facebook/nllb-200-1.3B metrics: - bleu - rouge model-index: - name: nllb-200-1.3B-ICFOSS-Hindi_Malayalam_Translator results: [] --- # nllb-200-1.3B-ICFOSS-Hindi_Malayalam_Translator This model is a fine-tuned version of [facebook/nllb-200-1.3B](https://huggingface.co/facebook/nllb-200-1.3B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.5883 - Bleu: 32.3133 - Rouge: {'rouge1': 0.4065168353303946, 'rouge2': 0.2762287202150305, 'rougeL': 0.3947284265080875, 'rougeLsum': 0.3952044100349186} - Chrf: {'score': 69.00192526889488, 'char_order': 6, 'word_order': 0, 'beta': 2} ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Rouge | Chrf | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:----------------------------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------:| | 0.7199 | 1.0 | 4698 | 0.6215 | 29.8169 | {'rouge1': 0.405762448982788, 'rouge2': 0.2722973168668976, 'rougeL': 0.3920717141056125, 'rougeLsum': 0.39226265285587325} | {'score': 67.671645233609, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 0.6269 | 2.0 | 9396 | 0.5960 | 31.5169 | {'rouge1': 0.4074341383663418, 'rouge2': 0.2754310444010575, 'rougeL': 0.3950826699767377, 'rougeLsum': 0.3954069337543914} | {'score': 68.50668767972792, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 0.5962 | 3.0 | 14094 | 0.5891 | 32.4131 | {'rouge1': 0.4065168353303946, 'rouge2': 0.2774409260882534, 'rougeL': 0.3949096085748628, 'rougeLsum': 0.39546625690693493} | {'score': 68.94783702655978, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 0.5855 | 4.0 | 18792 | 0.5882 | 32.4648 | {'rouge1': 0.4065168353303946, 'rouge2': 0.2762287202150305, 'rougeL': 0.3947284265080875, 'rougeLsum': 0.3952044100349186} | {'score': 69.10087499970177, 'char_order': 6, 'word_order': 0, 'beta': 2} | | 0.5835 | 5.0 | 23490 | 0.5883 | 32.3133 | {'rouge1': 0.4065168353303946, 'rouge2': 0.2762287202150305, 'rougeL': 0.3947284265080875, 'rougeLsum': 0.3952044100349186} | {'score': 69.00192526889488, 'char_order': 6, 'word_order': 0, 'beta': 2} | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.2 - Pytorch 2.3.0+cu121 - Datasets 2.19.0 - Tokenizers 0.19.1