File size: 1,445 Bytes
8d3ae62
 
 
 
 
 
 
7e06564
 
4447d34
7e06564
 
 
 
 
4702e7d
1523445
8d3ae62
 
4447d34
8d3ae62
520e4fc
4447d34
 
 
 
f46f7a0
38e73e4
4447d34
 
8d3ae62
 
 
 
 
e4e6961
8d3ae62
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
---
tags:
- text-generation-inference
- text-generation
- peft
library_name: transformers
widget:
- messages:
  - role: user
    content: Translate the text 'Bonjour, comment allez-vous?' from French to English.
datasets:
- tatsu-lab/alpaca
metrics:
- accuracy
pipeline_tag: text-generation
license: cc-by-nc-4.0
inference: false
---

## LAI-Paca-7b

Instruction Fine-Tune of Mistral with the Alpaca dataset for instructions. It should primarily be used for API calls for tools, such as making a call to obtain a title for a song generated by a music generation AI based on a provided prompt or other applications.

## Notice

Please remember that the uploaded model is a adapter model.
<br>
It should be used in the Alpaca format.

## Usage

```python

from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "Artples/LAI-Paca-7b"

tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
    model_path,
    device_map="auto",
    torch_dtype='auto'
).eval()

# Prompt content: "hi"
messages = [
    {"role": "user", "content": "hi"}
]

input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)

# Model response: "Hello! How can I assist you today?"
print(response)
```