File size: 1,445 Bytes
8d3ae62 7e06564 4447d34 7e06564 4702e7d 1523445 8d3ae62 4447d34 8d3ae62 520e4fc 4447d34 f46f7a0 38e73e4 4447d34 8d3ae62 e4e6961 8d3ae62 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
---
tags:
- text-generation-inference
- text-generation
- peft
library_name: transformers
widget:
- messages:
- role: user
content: Translate the text 'Bonjour, comment allez-vous?' from French to English.
datasets:
- tatsu-lab/alpaca
metrics:
- accuracy
pipeline_tag: text-generation
license: cc-by-nc-4.0
inference: false
---
## LAI-Paca-7b
Instruction Fine-Tune of Mistral with the Alpaca dataset for instructions. It should primarily be used for API calls for tools, such as making a call to obtain a title for a song generated by a music generation AI based on a provided prompt or other applications.
## Notice
Please remember that the uploaded model is a adapter model.
<br>
It should be used in the Alpaca format.
## Usage
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_path = "Artples/LAI-Paca-7b"
tokenizer = AutoTokenizer.from_pretrained(model_path)
model = AutoModelForCausalLM.from_pretrained(
model_path,
device_map="auto",
torch_dtype='auto'
).eval()
# Prompt content: "hi"
messages = [
{"role": "user", "content": "hi"}
]
input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, add_generation_prompt=True, return_tensors='pt')
output_ids = model.generate(input_ids.to('cuda'))
response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True)
# Model response: "Hello! How can I assist you today?"
print(response)
``` |