Initial commit
Browse files- .gitattributes +1 -0
- README.md +37 -0
- a2c-AntBulletEnv-v0.zip +3 -0
- a2c-AntBulletEnv-v0/_stable_baselines3_version +1 -0
- a2c-AntBulletEnv-v0/data +106 -0
- a2c-AntBulletEnv-v0/policy.optimizer.pth +3 -0
- a2c-AntBulletEnv-v0/policy.pth +3 -0
- a2c-AntBulletEnv-v0/pytorch_variables.pth +3 -0
- a2c-AntBulletEnv-v0/system_info.txt +7 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
- vec_normalize.pkl +3 -0
.gitattributes
CHANGED
@@ -32,3 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
32 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
34 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
35 |
+
replay.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- AntBulletEnv-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: A2C
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: AntBulletEnv-v0
|
16 |
+
type: AntBulletEnv-v0
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 1654.94 +/- 102.31
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **A2C** Agent playing **AntBulletEnv-v0**
|
25 |
+
This is a trained model of a **A2C** agent playing **AntBulletEnv-v0**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
a2c-AntBulletEnv-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:76916a7f2596683a888d1c76ff6ec90ee97978184f5a8bda817198ada622e8b6
|
3 |
+
size 129260
|
a2c-AntBulletEnv-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
a2c-AntBulletEnv-v0/data
ADDED
@@ -0,0 +1,106 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7efd712bb1f0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd712bb280>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd712bb310>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd712bb3a0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7efd712bb430>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7efd712bb4c0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd712bb550>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd712bb5e0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7efd712bb670>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd712bb700>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd712bb790>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd712bb820>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7efd712a1b70>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {
|
24 |
+
":type:": "<class 'dict'>",
|
25 |
+
":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu",
|
26 |
+
"log_std_init": -2,
|
27 |
+
"ortho_init": false,
|
28 |
+
"optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>",
|
29 |
+
"optimizer_kwargs": {
|
30 |
+
"alpha": 0.99,
|
31 |
+
"eps": 1e-05,
|
32 |
+
"weight_decay": 0
|
33 |
+
}
|
34 |
+
},
|
35 |
+
"observation_space": {
|
36 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
37 |
+
":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=",
|
38 |
+
"dtype": "float32",
|
39 |
+
"_shape": [
|
40 |
+
28
|
41 |
+
],
|
42 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]",
|
43 |
+
"high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]",
|
44 |
+
"bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
45 |
+
"bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]",
|
46 |
+
"_np_random": null
|
47 |
+
},
|
48 |
+
"action_space": {
|
49 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
50 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
51 |
+
"dtype": "float32",
|
52 |
+
"_shape": [
|
53 |
+
8
|
54 |
+
],
|
55 |
+
"low": "[-1. -1. -1. -1. -1. -1. -1. -1.]",
|
56 |
+
"high": "[1. 1. 1. 1. 1. 1. 1. 1.]",
|
57 |
+
"bounded_below": "[ True True True True True True True True]",
|
58 |
+
"bounded_above": "[ True True True True True True True True]",
|
59 |
+
"_np_random": null
|
60 |
+
},
|
61 |
+
"n_envs": 4,
|
62 |
+
"num_timesteps": 2000000,
|
63 |
+
"_total_timesteps": 2000000,
|
64 |
+
"_num_timesteps_at_start": 0,
|
65 |
+
"seed": null,
|
66 |
+
"action_noise": null,
|
67 |
+
"start_time": 1673990981789162598,
|
68 |
+
"learning_rate": 0.00096,
|
69 |
+
"tensorboard_log": null,
|
70 |
+
"lr_schedule": {
|
71 |
+
":type:": "<class 'function'>",
|
72 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
73 |
+
},
|
74 |
+
"_last_obs": {
|
75 |
+
":type:": "<class 'numpy.ndarray'>",
|
76 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHxvyz+Pe98+C7YnPlkQrD9GpGe91VDxPkvTED8rgvK+V9VsvxUR7j+he4C/6Le2vDOczz+XiKK6+Afdv+v/ZD/ACc+/SgrFP1WS2b73cki+BpB8v6R8XT+2/TQ/tteWPwRaU79Aghs/P6JVwBodx7/MWxk/3lmbP79xq7/tFq8/2qsDQOIlMsAaJco/GegLP5b5+r+hZSI+hFwNP99oWT98Kpi/v/LHP3ltGMAoKGU9D2afvgqxgby3Uvs9QP8BwAQIvj9Pdv290q77PS2xvD8EWlO/+rbSv0ximT4aHce/X32BPnw3kj9cEYm/msRvP49HSD9qxFbAId8JP7VaNj/LY5S/gKfLP0AncT572oZA6B/Dv+yD+juLhcC/v1mDPtWt8b6xAF5Adh8Rv2XoGj9UbMA/h3CAQCSm6r7yrem+BFpTv/q20r9MYpk+Gh3Hv4ykG7187w0/nXACPROrrD9zbVY87faBP+LBCj7rvYC+vFzNv2bipL7m2Es/Srk0vEBPwr8P3pI+tYUfvwvLer2FgvG+Q0q/v/Eq3j5XOuW9Me+5P/OnW7+Wtzo/LxiHP0sKmz9Aghs/TGKZPhodx7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
77 |
+
},
|
78 |
+
"_last_episode_starts": {
|
79 |
+
":type:": "<class 'numpy.ndarray'>",
|
80 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
81 |
+
},
|
82 |
+
"_last_original_obs": {
|
83 |
+
":type:": "<class 'numpy.ndarray'>",
|
84 |
+
":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAwkLS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdt67PQAAAADt9fK/AAAAAEGzEb4AAAAANc/6PwAAAABazw+8AAAAADnE4z8AAAAAojZ/ugAAAAAK1/S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATw8ktwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA0FuT0AAAAAZ+zxvwAAAACl6+u9AAAAAPrD8z8AAAAAx0zvvQAAAAC9ruc/AAAAAI3kxD0AAAAAHgjavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyNjLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC7O0M9AAAAAGO26r8AAAAA0xuhvQAAAACkZPM/AAAAAFznPD0AAAAASWfoPwAAAACczQi9AAAAAGKM8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlCYa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD52RPQAAAADV3fi/AAAAAMYn8bwAAAAA+Kz6PwAAAADVWoI9AAAAAOnp+z8AAAAAFr4EPgAAAABsaOK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"
|
85 |
+
},
|
86 |
+
"_episode_num": 0,
|
87 |
+
"use_sde": true,
|
88 |
+
"sde_sample_freq": -1,
|
89 |
+
"_current_progress_remaining": 0.0,
|
90 |
+
"ep_info_buffer": {
|
91 |
+
":type:": "<class 'collections.deque'>",
|
92 |
+
":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKA7NKpT/AGMAWyUTegDjAF0lEdAqPz3O6d1+3V9lChoBkdAn4idsSCe3GgHTegDaAhHQKkBWy9EkSp1fZQoaAZHQJ5gf1Hvtt1oB03oA2gIR0CpA3yxiXpodX2UKGgGR0CgY1nJkoWpaAdN6ANoCEdAqQbeTcIqsnV9lChoBkdAn5q1HJ9y92gHTegDaAhHQKkJ3RYRuj11fZQoaAZHQKD5ihh6SkloB03oA2gIR0CpDfmHHmzTdX2UKGgGR0CfkwUTtb9qaAdN6ANoCEdAqRAli2DxsnV9lChoBkdAn99m1YyO72gHTegDaAhHQKkTigGr0at1fZQoaAZHQKEFstvGZNRoB03oA2gIR0CpFmkBS1mbdX2UKGgGR0Cgtl/sNUfgaAdN6ANoCEdAqRp77Ikqt3V9lChoBkdAoOKJJCjUNWgHTegDaAhHQKkcnFzdUKl1fZQoaAZHQKELZJkoWpJoB03oA2gIR0CpIAPt2LYPdX2UKGgGR0CgrDbNbC79aAdN6ANoCEdAqSLjFXJYDHV9lChoBkdAnwfKaPS2IGgHTegDaAhHQKknCMOwxFl1fZQoaAZHQKCQ9H5JsftoB03oA2gIR0CpKSHc1wYMdX2UKGgGR0ChAczdtVJdaAdN6ANoCEdAqSx9b7j1f3V9lChoBkdAnezStNi6QWgHTegDaAhHQKkvW9GI9DB1fZQoaAZHQKClLqCYkVxoB03oA2gIR0CpM3XnZCfIdX2UKGgGR0CeEj9RaX8gaAdN6ANoCEdAqTWYY1pCbHV9lChoBkdAn06Geg+Ql2gHTegDaAhHQKk4+5vLowF1fZQoaAZHQJ96nzH0btJoB03oA2gIR0CpO9cy31BddX2UKGgGR0CezkrMkhRqaAdN6ANoCEdAqT/qhcqvvHV9lChoBkdAn/X/GuLaVWgHTegDaAhHQKlB/NorWiF1fZQoaAZHQKBWMaXrt3RoB03oA2gIR0CpRWpeE7GOdX2UKGgGR0Ce7+tQ9A5aaAdN6ANoCEdAqUhISzw+dXV9lChoBkdAn4HIPsiSq2gHTegDaAhHQKlMZCSA6Ml1fZQoaAZHQKCkLhddE9doB03oA2gIR0CpTo8bzbvgdX2UKGgGR0CgNpYcFQl9aAdN6ANoCEdAqVH0pd8iOnV9lChoBkdAnLsdOuaF22gHTegDaAhHQKlU7Bv73wl1fZQoaAZHQJ0iLcdo371oB03oA2gIR0CpWQyhi9ZidX2UKGgGR0Cc3wHp8neBaAdN6ANoCEdAqVsvtY0VJ3V9lChoBkdAnOSj7Q9idGgHTegDaAhHQKlelScbzbx1fZQoaAZHQKDumaTfR/poB03oA2gIR0CpYZq3NLUTdX2UKGgGR0CVeYOyE+PjaAdN6ANoCEdAqWXK/IsAenV9lChoBkdAkphiVKPGQ2gHTegDaAhHQKln5rUsnRd1fZQoaAZHQKCoY1baAWloB03oA2gIR0Cpa0RGDtgKdX2UKGgGR0Cf77NeMQ2/aAdN6ANoCEdAqW5BASnLq3V9lChoBkdAnotQDzRQamgHTegDaAhHQKlyd2vjfel1fZQoaAZHQJ/hJUDMeOpoB03oA2gIR0CpdJZxJd0JdX2UKGgGR0CfIwTIvJzUaAdN6ANoCEdAqXgKkqMFU3V9lChoBkdAn5GVKTSssGgHTegDaAhHQKl6+jJuEVZ1fZQoaAZHQJ7F947ihnJoB03oA2gIR0Cpfwuqm0mddX2UKGgGR0Ce8HZ75VOsaAdN6ANoCEdAqYEyuwHJLnV9lChoBkdAm8k0XHim22gHTegDaAhHQKmEtRl6JIl1fZQoaAZHQKFaznbqQiloB03oA2gIR0Cph65RCQcQdX2UKGgGR0ChVWmZE2HdaAdN6ANoCEdAqYvJDE3sHHV9lChoBkdAobadd3SrpGgHTegDaAhHQKmN90tAcDN1fZQoaAZHQJ/Y60/nnuBoB03oA2gIR0CpkWRLCemOdX2UKGgGR0CgMS9RJmNBaAdN6ANoCEdAqZREHIIWxnV9lChoBkdAn8YGDHwPRWgHTegDaAhHQKmYYuHvc8F1fZQoaAZHQJ/n+hkAggZoB03oA2gIR0Cpmn3vhIe6dX2UKGgGR0Ccb55tFa0QaAdN6ANoCEdAqZ3h4B3iaXV9lChoBkdAn95YyXUpeGgHTegDaAhHQKmgvenhsIp1fZQoaAZHQKADjR2KVIJoB03oA2gIR0CppMyqEOAidX2UKGgGR0CgXChq9GqhaAdN6ANoCEdAqabd/QSi/XV9lChoBkdAniMYbfgrH2gHTegDaAhHQKmqL9mYjSp1fZQoaAZHQJ7NjPqs2ehoB03oA2gIR0CprSfjKgZkdX2UKGgGR0CedN1dgOSXaAdN6ANoCEdAqbFP6qKgqXV9lChoBkdAoB257/n4f2gHTegDaAhHQKmzbAzHjp91fZQoaAZHQJz6B8zAN5NoB03oA2gIR0Cpts+CkGiYdX2UKGgGR0Cf0f3xWkrPaAdN6ANoCEdAqbnDQeFL4HV9lChoBkdAnmbyX+l0o2gHTegDaAhHQKm99tKqXF91fZQoaAZHQJ/6c2gnMMZoB03oA2gIR0CpwBFy7wrldX2UKGgGR0CdgQBdD6WPaAdN6ANoCEdAqcOKe9SMtXV9lChoBkdAnbKyqQzUJGgHTegDaAhHQKnGbX1anrJ1fZQoaAZHQJ8pOXqqwQloB03oA2gIR0CpyngVwgkkdX2UKGgGR0CenYxcE/0NaAdN6ANoCEdAqcyXSfDk2nV9lChoBkdAn/KxVZLZjGgHTegDaAhHQKnP/82Jiy91fZQoaAZHQKBZrMN+b3JoB03oA2gIR0Cp0ul+NLlFdX2UKGgGR0CfIm1KXfIkaAdN6ANoCEdAqdcLZnL7oHV9lChoBkdAn7Axoh6jWWgHTegDaAhHQKnZIpiI+GJ1fZQoaAZHQJ/ub1EmY0FoB03oA2gIR0Cp3LMY/FBIdX2UKGgGR0Cg+m3cHnloaAdN6ANoCEdAqd+ZooNNJ3V9lChoBkdAoUFPeP7vX2gHTegDaAhHQKnkxK15Sm91fZQoaAZHQKE/I9mpVCJoB03oA2gIR0Cp6BQ04zacdX2UKGgGR0CgzI1Ed/8VaAdN6ANoCEdAqe1bUwztTnV9lChoBkdAoHzrCxeLN2gHTegDaAhHQKnwTP8AJcB1fZQoaAZHQJ/BCGsV+JBoB03oA2gIR0Cp9HIsqaw2dX2UKGgGR0Cf3yiXpnpTaAdN6ANoCEdAqfajPfKp1nV9lChoBkdAnrQIjbBXS2gHTegDaAhHQKn6CI42jwh1fZQoaAZHQJ/oOtxMnJFoB03oA2gIR0Cp/PIsAeaKdX2UKGgGR0CgGbGXw9aEaAdN6ANoCEdAqgEg/3WWhXV9lChoBkdAoLCte6ZpjGgHTegDaAhHQKoDPhWo3rF1fZQoaAZHQKC9jtdiUgVoB03oA2gIR0CqBpOhbnoxdX2UKGgGR0ChXnlrdnCgaAdN6ANoCEdAqgltRUFSsXV9lChoBkdAoXz9M/QjU2gHTegDaAhHQKoNf2+PBBR1fZQoaAZHQKCJphLoOhFoB03oA2gIR0CqD6BMBZIQdX2UKGgGR0CgGQxV6u4gaAdN6ANoCEdAqhMDodMj/3V9lChoBkdAoL83ag261GgHTegDaAhHQKoV9Zs9B8h1fZQoaAZHQJ7phcv/R3NoB03oA2gIR0CqGgPepGWldX2UKGgGR0Ceu1gJTl1baAdN6ANoCEdAqhwWdqcmSnV9lChoBkdAnXfmll9SdmgHTegDaAhHQKoffJGOMl11fZQoaAZHQJ6g9jtoi9toB03oA2gIR0CqIlvKEFnqdX2UKGgGR0CeJ/tF8XvZaAdN6ANoCEdAqiaDy6MBIXV9lChoBkdAnQhRiTdLx2gHTegDaAhHQKoopyiEg4h1fZQoaAZHQJ37+dBjWkJoB03oA2gIR0CqLAMmfGuLdX2UKGgGR0CYmGNPxhDxaAdN6ANoCEdAqi7bZnL7oHV9lChoBkdAl3gufRNRFmgHTegDaAhHQKozHBE8aGZ1fZQoaAZHQJkPap5u63BoB03oA2gIR0CqNTL0z0pWdX2UKGgGR0Cb1CSVnmJWaAdN6ANoCEdAqjiV69kBjnVlLg=="
|
93 |
+
},
|
94 |
+
"ep_success_buffer": {
|
95 |
+
":type:": "<class 'collections.deque'>",
|
96 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
97 |
+
},
|
98 |
+
"_n_updates": 62500,
|
99 |
+
"n_steps": 8,
|
100 |
+
"gamma": 0.99,
|
101 |
+
"gae_lambda": 0.9,
|
102 |
+
"ent_coef": 0.0,
|
103 |
+
"vf_coef": 0.4,
|
104 |
+
"max_grad_norm": 0.5,
|
105 |
+
"normalize_advantage": false
|
106 |
+
}
|
a2c-AntBulletEnv-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:60a1287147da62a07630e1fa170fade75278a7a0bc8a26af66e7be0988fa0640
|
3 |
+
size 56190
|
a2c-AntBulletEnv-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a158a29524724f7bb7c2c66a7a6356c0b45c8f0a1685103f97f9c96e45a5d999
|
3 |
+
size 56958
|
a2c-AntBulletEnv-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
a2c-AntBulletEnv-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7efd712bb1f0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7efd712bb280>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7efd712bb310>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7efd712bb3a0>", "_build": "<function ActorCriticPolicy._build at 0x7efd712bb430>", "forward": "<function ActorCriticPolicy.forward at 0x7efd712bb4c0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7efd712bb550>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7efd712bb5e0>", "_predict": "<function ActorCriticPolicy._predict at 0x7efd712bb670>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7efd712bb700>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7efd712bb790>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7efd712bb820>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7efd712a1b70>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVZwIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgKSxyFlIwBQ5R0lFKUjARoaWdolGgSKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaApLHIWUaBV0lFKUjA1ib3VuZGVkX2JlbG93lGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCFLHIWUaBV0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAQEBAQEBAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAEBAQEBAQEBlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1673990981789162598, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/T3UQTVUdaYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAHxvyz+Pe98+C7YnPlkQrD9GpGe91VDxPkvTED8rgvK+V9VsvxUR7j+he4C/6Le2vDOczz+XiKK6+Afdv+v/ZD/ACc+/SgrFP1WS2b73cki+BpB8v6R8XT+2/TQ/tteWPwRaU79Aghs/P6JVwBodx7/MWxk/3lmbP79xq7/tFq8/2qsDQOIlMsAaJco/GegLP5b5+r+hZSI+hFwNP99oWT98Kpi/v/LHP3ltGMAoKGU9D2afvgqxgby3Uvs9QP8BwAQIvj9Pdv290q77PS2xvD8EWlO/+rbSv0ximT4aHce/X32BPnw3kj9cEYm/msRvP49HSD9qxFbAId8JP7VaNj/LY5S/gKfLP0AncT572oZA6B/Dv+yD+juLhcC/v1mDPtWt8b6xAF5Adh8Rv2XoGj9UbMA/h3CAQCSm6r7yrem+BFpTv/q20r9MYpk+Gh3Hv4ykG7187w0/nXACPROrrD9zbVY87faBP+LBCj7rvYC+vFzNv2bipL7m2Es/Srk0vEBPwr8P3pI+tYUfvwvLer2FgvG+Q0q/v/Eq3j5XOuW9Me+5P/OnW7+Wtzo/LxiHP0sKmz9Aghs/TGKZPhodx7+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAAAwkLS2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAdt67PQAAAADt9fK/AAAAAEGzEb4AAAAANc/6PwAAAABazw+8AAAAADnE4z8AAAAAojZ/ugAAAAAK1/S/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAATw8ktwAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgA0FuT0AAAAAZ+zxvwAAAACl6+u9AAAAAPrD8z8AAAAAx0zvvQAAAAC9ruc/AAAAAI3kxD0AAAAAHgjavwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACyNjLUAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIC7O0M9AAAAAGO26r8AAAAA0xuhvQAAAACkZPM/AAAAAFznPD0AAAAASWfoPwAAAACczQi9AAAAAGKM8r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABlCYa2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAD52RPQAAAADV3fi/AAAAAMYn8bwAAAAA+Kz6PwAAAADVWoI9AAAAAOnp+z8AAAAAFr4EPgAAAABsaOK/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQKA7NKpT/AGMAWyUTegDjAF0lEdAqPz3O6d1+3V9lChoBkdAn4idsSCe3GgHTegDaAhHQKkBWy9EkSp1fZQoaAZHQJ5gf1Hvtt1oB03oA2gIR0CpA3yxiXpodX2UKGgGR0CgY1nJkoWpaAdN6ANoCEdAqQbeTcIqsnV9lChoBkdAn5q1HJ9y92gHTegDaAhHQKkJ3RYRuj11fZQoaAZHQKD5ihh6SkloB03oA2gIR0CpDfmHHmzTdX2UKGgGR0CfkwUTtb9qaAdN6ANoCEdAqRAli2DxsnV9lChoBkdAn99m1YyO72gHTegDaAhHQKkTigGr0at1fZQoaAZHQKEFstvGZNRoB03oA2gIR0CpFmkBS1mbdX2UKGgGR0Cgtl/sNUfgaAdN6ANoCEdAqRp77Ikqt3V9lChoBkdAoOKJJCjUNWgHTegDaAhHQKkcnFzdUKl1fZQoaAZHQKELZJkoWpJoB03oA2gIR0CpIAPt2LYPdX2UKGgGR0CgrDbNbC79aAdN6ANoCEdAqSLjFXJYDHV9lChoBkdAnwfKaPS2IGgHTegDaAhHQKknCMOwxFl1fZQoaAZHQKCQ9H5JsftoB03oA2gIR0CpKSHc1wYMdX2UKGgGR0ChAczdtVJdaAdN6ANoCEdAqSx9b7j1f3V9lChoBkdAnezStNi6QWgHTegDaAhHQKkvW9GI9DB1fZQoaAZHQKClLqCYkVxoB03oA2gIR0CpM3XnZCfIdX2UKGgGR0CeEj9RaX8gaAdN6ANoCEdAqTWYY1pCbHV9lChoBkdAn06Geg+Ql2gHTegDaAhHQKk4+5vLowF1fZQoaAZHQJ96nzH0btJoB03oA2gIR0CpO9cy31BddX2UKGgGR0CezkrMkhRqaAdN6ANoCEdAqT/qhcqvvHV9lChoBkdAn/X/GuLaVWgHTegDaAhHQKlB/NorWiF1fZQoaAZHQKBWMaXrt3RoB03oA2gIR0CpRWpeE7GOdX2UKGgGR0Ce7+tQ9A5aaAdN6ANoCEdAqUhISzw+dXV9lChoBkdAn4HIPsiSq2gHTegDaAhHQKlMZCSA6Ml1fZQoaAZHQKCkLhddE9doB03oA2gIR0CpTo8bzbvgdX2UKGgGR0CgNpYcFQl9aAdN6ANoCEdAqVH0pd8iOnV9lChoBkdAnLsdOuaF22gHTegDaAhHQKlU7Bv73wl1fZQoaAZHQJ0iLcdo371oB03oA2gIR0CpWQyhi9ZidX2UKGgGR0Cc3wHp8neBaAdN6ANoCEdAqVsvtY0VJ3V9lChoBkdAnOSj7Q9idGgHTegDaAhHQKlelScbzbx1fZQoaAZHQKDumaTfR/poB03oA2gIR0CpYZq3NLUTdX2UKGgGR0CVeYOyE+PjaAdN6ANoCEdAqWXK/IsAenV9lChoBkdAkphiVKPGQ2gHTegDaAhHQKln5rUsnRd1fZQoaAZHQKCoY1baAWloB03oA2gIR0Cpa0RGDtgKdX2UKGgGR0Cf77NeMQ2/aAdN6ANoCEdAqW5BASnLq3V9lChoBkdAnotQDzRQamgHTegDaAhHQKlyd2vjfel1fZQoaAZHQJ/hJUDMeOpoB03oA2gIR0CpdJZxJd0JdX2UKGgGR0CfIwTIvJzUaAdN6ANoCEdAqXgKkqMFU3V9lChoBkdAn5GVKTSssGgHTegDaAhHQKl6+jJuEVZ1fZQoaAZHQJ7F947ihnJoB03oA2gIR0Cpfwuqm0mddX2UKGgGR0Ce8HZ75VOsaAdN6ANoCEdAqYEyuwHJLnV9lChoBkdAm8k0XHim22gHTegDaAhHQKmEtRl6JIl1fZQoaAZHQKFaznbqQiloB03oA2gIR0Cph65RCQcQdX2UKGgGR0ChVWmZE2HdaAdN6ANoCEdAqYvJDE3sHHV9lChoBkdAobadd3SrpGgHTegDaAhHQKmN90tAcDN1fZQoaAZHQJ/Y60/nnuBoB03oA2gIR0CpkWRLCemOdX2UKGgGR0CgMS9RJmNBaAdN6ANoCEdAqZREHIIWxnV9lChoBkdAn8YGDHwPRWgHTegDaAhHQKmYYuHvc8F1fZQoaAZHQJ/n+hkAggZoB03oA2gIR0Cpmn3vhIe6dX2UKGgGR0Ccb55tFa0QaAdN6ANoCEdAqZ3h4B3iaXV9lChoBkdAn95YyXUpeGgHTegDaAhHQKmgvenhsIp1fZQoaAZHQKADjR2KVIJoB03oA2gIR0CppMyqEOAidX2UKGgGR0CgXChq9GqhaAdN6ANoCEdAqabd/QSi/XV9lChoBkdAniMYbfgrH2gHTegDaAhHQKmqL9mYjSp1fZQoaAZHQJ7NjPqs2ehoB03oA2gIR0CprSfjKgZkdX2UKGgGR0CedN1dgOSXaAdN6ANoCEdAqbFP6qKgqXV9lChoBkdAoB257/n4f2gHTegDaAhHQKmzbAzHjp91fZQoaAZHQJz6B8zAN5NoB03oA2gIR0Cpts+CkGiYdX2UKGgGR0Cf0f3xWkrPaAdN6ANoCEdAqbnDQeFL4HV9lChoBkdAnmbyX+l0o2gHTegDaAhHQKm99tKqXF91fZQoaAZHQJ/6c2gnMMZoB03oA2gIR0CpwBFy7wrldX2UKGgGR0CdgQBdD6WPaAdN6ANoCEdAqcOKe9SMtXV9lChoBkdAnbKyqQzUJGgHTegDaAhHQKnGbX1anrJ1fZQoaAZHQJ8pOXqqwQloB03oA2gIR0CpyngVwgkkdX2UKGgGR0CenYxcE/0NaAdN6ANoCEdAqcyXSfDk2nV9lChoBkdAn/KxVZLZjGgHTegDaAhHQKnP/82Jiy91fZQoaAZHQKBZrMN+b3JoB03oA2gIR0Cp0ul+NLlFdX2UKGgGR0CfIm1KXfIkaAdN6ANoCEdAqdcLZnL7oHV9lChoBkdAn7Axoh6jWWgHTegDaAhHQKnZIpiI+GJ1fZQoaAZHQJ/ub1EmY0FoB03oA2gIR0Cp3LMY/FBIdX2UKGgGR0Cg+m3cHnloaAdN6ANoCEdAqd+ZooNNJ3V9lChoBkdAoUFPeP7vX2gHTegDaAhHQKnkxK15Sm91fZQoaAZHQKE/I9mpVCJoB03oA2gIR0Cp6BQ04zacdX2UKGgGR0CgzI1Ed/8VaAdN6ANoCEdAqe1bUwztTnV9lChoBkdAoHzrCxeLN2gHTegDaAhHQKnwTP8AJcB1fZQoaAZHQJ/BCGsV+JBoB03oA2gIR0Cp9HIsqaw2dX2UKGgGR0Cf3yiXpnpTaAdN6ANoCEdAqfajPfKp1nV9lChoBkdAnrQIjbBXS2gHTegDaAhHQKn6CI42jwh1fZQoaAZHQJ/oOtxMnJFoB03oA2gIR0Cp/PIsAeaKdX2UKGgGR0CgGbGXw9aEaAdN6ANoCEdAqgEg/3WWhXV9lChoBkdAoLCte6ZpjGgHTegDaAhHQKoDPhWo3rF1fZQoaAZHQKC9jtdiUgVoB03oA2gIR0CqBpOhbnoxdX2UKGgGR0ChXnlrdnCgaAdN6ANoCEdAqgltRUFSsXV9lChoBkdAoXz9M/QjU2gHTegDaAhHQKoNf2+PBBR1fZQoaAZHQKCJphLoOhFoB03oA2gIR0CqD6BMBZIQdX2UKGgGR0CgGQxV6u4gaAdN6ANoCEdAqhMDodMj/3V9lChoBkdAoL83ag261GgHTegDaAhHQKoV9Zs9B8h1fZQoaAZHQJ7phcv/R3NoB03oA2gIR0CqGgPepGWldX2UKGgGR0Ceu1gJTl1baAdN6ANoCEdAqhwWdqcmSnV9lChoBkdAnXfmll9SdmgHTegDaAhHQKoffJGOMl11fZQoaAZHQJ6g9jtoi9toB03oA2gIR0CqIlvKEFnqdX2UKGgGR0CeJ/tF8XvZaAdN6ANoCEdAqiaDy6MBIXV9lChoBkdAnQhRiTdLx2gHTegDaAhHQKoopyiEg4h1fZQoaAZHQJ37+dBjWkJoB03oA2gIR0CqLAMmfGuLdX2UKGgGR0CYmGNPxhDxaAdN6ANoCEdAqi7bZnL7oHV9lChoBkdAl3gufRNRFmgHTegDaAhHQKozHBE8aGZ1fZQoaAZHQJkPap5u63BoB03oA2gIR0CqNTL0z0pWdX2UKGgGR0Cb1CSVnmJWaAdN6ANoCEdAqjiV69kBjnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:78c3a796dd4fc1c0319fa336b44ef9eb0ba44686ebda22e5f23fe203b6aa9fc3
|
3 |
+
size 1215472
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 1654.9432091549527, "std_reward": 102.30761897004929, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-01-17T22:26:10.201798"}
|
vec_normalize.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03477419aedcff326d3b1b18ea5cead3c1d12e801ba689bb4cbc8decdc706f6c
|
3 |
+
size 2521
|