File size: 2,204 Bytes
1f24704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
language:
- ar
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0
metrics:
- wer
model-index:
- name: Whisper Tunisien
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Tunisian_dataset_STT-TTS15s_filtred1.0
      type: Arbi-Houssem/Tunisian_dataset_STT-TTS15s_filtred1.0
      args: 'config: ar, split: test'
    metrics:
    - name: Wer
      type: wer
      value: 102.70087778528021
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Tunisien

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Tunisian_dataset_STT-TTS15s_filtred1.0 dataset.
It achieves the following results on the evaluation set:
- Loss: 6.8348
- Wer: 102.7009

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0005
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 3000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Wer      |
|:-------------:|:-------:|:----:|:---------------:|:--------:|
| 1.1414        | 3.8760  | 500  | 4.1822          | 181.0263 |
| 0.4667        | 7.7519  | 1000 | 5.0049          | 108.1702 |
| 0.1821        | 11.6279 | 1500 | 5.5927          | 102.7684 |
| 0.068         | 15.5039 | 2000 | 6.2194          | 106.2120 |
| 0.011         | 19.3798 | 2500 | 6.3815          | 103.0385 |
| 0.0003        | 23.2558 | 3000 | 6.8348          | 102.7009 |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1