Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,124 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
datasets:
|
| 4 |
+
- unsloth/LaTeX_OCR
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
base_model:
|
| 8 |
+
- meta-llama/Llama-3.2-1B
|
| 9 |
+
- google/siglip-so400m-patch14-384
|
| 10 |
+
tags:
|
| 11 |
+
- vlm
|
| 12 |
+
- vision
|
| 13 |
+
- multimodal
|
| 14 |
+
- AnyModal
|
| 15 |
+
---
|
| 16 |
+
# AnyModal/LaTeX-OCR-Llama-3.2-1B
|
| 17 |
+
|
| 18 |
+
**AnyModal/LaTeX-OCR-Llama-3.2-1B** is an experimental model designed to convert images of handwritten and printed mathematical equations into LaTeX representations. Developed within the [AnyModal](https://github.com/ritabratamaiti/AnyModal) framework, this model combines a `google/siglip-so400m-patch14-384` image encoder with the Llama 3.2-1B language model. It has been trained on 20% of the [unsloth/LaTeX_OCR dataset](https://huggingface.co/datasets/unsloth/LaTeX_OCR), which itself is a subset of the [linxy/LaTeX_OCR dataset](https://huggingface.co/datasets/linxy/LaTeX_OCR).
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## Trained On
|
| 23 |
+
|
| 24 |
+
This model was trained on the [unsloth/LaTeX_OCR](https://huggingface.co/datasets/unsloth/LaTeX_OCR) dataset:
|
| 25 |
+
|
| 26 |
+
**LaTeX OCR Dataset**
|
| 27 |
+
*Linxy et al.*
|
| 28 |
+
|
| 29 |
+
The dataset contains 1% of samples from the larger [linxy/LaTeX_OCR dataset](https://huggingface.co/datasets/linxy/LaTeX_OCR), which includes images of handwritten and printed mathematical equations annotated with their corresponding LaTeX expressions. The current model was trained on 20% of the unsloth dataset, highlighting its experimental nature.
|
| 30 |
+
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
## How to Use
|
| 34 |
+
|
| 35 |
+
### Installation
|
| 36 |
+
|
| 37 |
+
Install the required dependencies:
|
| 38 |
+
|
| 39 |
+
```bash
|
| 40 |
+
pip install torch transformers torchvision huggingface_hub tqdm matplotlib Pillow
|
| 41 |
+
```
|
| 42 |
+
|
| 43 |
+
### Inference
|
| 44 |
+
|
| 45 |
+
Below is an example of generating LaTeX code from an image:
|
| 46 |
+
|
| 47 |
+
```python
|
| 48 |
+
import llm
|
| 49 |
+
import anymodal
|
| 50 |
+
import torch
|
| 51 |
+
import vision
|
| 52 |
+
from PIL import Image
|
| 53 |
+
from huggingface_hub import hf_hub_download, snapshot_download
|
| 54 |
+
|
| 55 |
+
# Load language model and tokenizer
|
| 56 |
+
llm_tokenizer, llm_model = llm.get_llm(
|
| 57 |
+
"meta-llama/Llama-3.2-1B",
|
| 58 |
+
access_token="GET_YOUR_OWN_TOKEN_FROM_HUGGINGFACE",
|
| 59 |
+
quantized=False,
|
| 60 |
+
use_peft=False,
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 64 |
+
llm_model.to(device)
|
| 65 |
+
|
| 66 |
+
llm_hidden_size = llm.get_hidden_size(llm_tokenizer, llm_model)
|
| 67 |
+
|
| 68 |
+
# Load vision model components
|
| 69 |
+
image_processor, vision_model, vision_hidden_size = vision.get_image_encoder(
|
| 70 |
+
"google/siglip-so400m-patch14-384", use_peft=False
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
# Initialize vision tokenizer and encoder
|
| 74 |
+
vision_encoder = vision.VisionEncoder(vision_model)
|
| 75 |
+
vision_tokenizer = vision.Projector(vision_hidden_size, llm_hidden_size, num_hidden=1)
|
| 76 |
+
|
| 77 |
+
# Initialize MultiModalModel
|
| 78 |
+
multimodal_model = anymodal.MultiModalModel(
|
| 79 |
+
input_processor=None,
|
| 80 |
+
input_encoder=vision_encoder,
|
| 81 |
+
input_tokenizer=vision_tokenizer,
|
| 82 |
+
language_tokenizer=llm_tokenizer,
|
| 83 |
+
language_model=llm_model,
|
| 84 |
+
prompt_text="The latex expression of the equation in the image is: ",
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Load pre-trained weights
|
| 88 |
+
if not os.path.exists("latex_ocr"):
|
| 89 |
+
os.makedirs("latex_ocr")
|
| 90 |
+
|
| 91 |
+
snapshot_download("AnyModal/latex-ocr-Llama-3.2-1B", local_dir="latex_ocr")
|
| 92 |
+
multimodal_model._load_model("latex_ocr")
|
| 93 |
+
|
| 94 |
+
# Generate LaTeX expression from an image
|
| 95 |
+
image_path = "example_equation.jpg" # Path to your image
|
| 96 |
+
image = Image.open(image_path).convert("RGB")
|
| 97 |
+
processed_image = image_processor(image, return_tensors="pt")
|
| 98 |
+
processed_image = {key: val.squeeze(0) for key, val in processed_image.items()}
|
| 99 |
+
|
| 100 |
+
# Generate LaTeX caption
|
| 101 |
+
generated_caption = multimodal_model.generate(processed_image, max_new_tokens=120)
|
| 102 |
+
print("Generated LaTeX Caption:", generated_caption)
|
| 103 |
+
```
|
| 104 |
+
|
| 105 |
+
---
|
| 106 |
+
|
| 107 |
+
## Project and Training Scripts
|
| 108 |
+
|
| 109 |
+
This model is part of the [AnyModal LaTeX OCR Project](https://github.com/ritabratamaiti/AnyModal/tree/main/LaTeX%20OCR).
|
| 110 |
+
|
| 111 |
+
- **Training Script**: [train.py](https://github.com/ritabratamaiti/AnyModal/blob/main/LaTeX%20OCR/train.py)
|
| 112 |
+
- **Inference Script**: [inference.py](https://github.com/ritabratamaiti/AnyModal/blob/main/LaTeX%20OCR/inference.py)
|
| 113 |
+
|
| 114 |
+
Refer to the project repository for further implementation details.
|
| 115 |
+
|
| 116 |
+
---
|
| 117 |
+
|
| 118 |
+
## Project Details
|
| 119 |
+
|
| 120 |
+
- **Vision Encoder**: The `google/siglip-so400m-patch14-384` model, pre-trained for visual feature extraction, was used as the image encoder.
|
| 121 |
+
- **Projector Network**: A dense projection network aligns visual features with the Llama 3.2-1B text generation model.
|
| 122 |
+
- **Language Model**: Llama 3.2-1B, a small causal language model, generates the LaTeX expression.
|
| 123 |
+
|
| 124 |
+
This implementation highlights a proof-of-concept approach using a limited training subset. Better performance can likely be achieved by training on more samples and incorporating a text-conditioned image encoder.
|