Update handler.py
Browse files- handler.py +85 -74
handler.py
CHANGED
|
@@ -1,116 +1,127 @@
|
|
| 1 |
-
from typing import List,
|
| 2 |
import base64
|
| 3 |
from PIL import Image
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 6 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
import controlnet_hinter
|
| 8 |
|
| 9 |
# set device
|
| 10 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 11 |
if device.type != 'cuda':
|
| 12 |
-
raise ValueError("
|
| 13 |
# set mixed precision dtype
|
| 14 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
| 15 |
|
| 16 |
-
# controlnet mapping for
|
| 17 |
CONTROLNET_MAPPING = {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
"depth": {
|
| 19 |
"model_id": "lllyasviel/sd-controlnet-depth",
|
| 20 |
"hinter": controlnet_hinter.hint_depth
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
}
|
| 22 |
}
|
| 23 |
|
|
|
|
| 24 |
class EndpointHandler():
|
| 25 |
def __init__(self, path=""):
|
| 26 |
# define default controlnet id and load controlnet
|
| 27 |
self.control_type = "depth"
|
| 28 |
-
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
|
| 29 |
-
|
| 30 |
-
# Load StableDiffusionControlNetPipeline
|
| 31 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
| 32 |
-
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
| 33 |
-
controlnet=self.controlnet,
|
| 34 |
torch_dtype=dtype,
|
| 35 |
safety_checker=None).to(device)
|
| 36 |
# Define Generator with seed
|
| 37 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
| 38 |
|
| 39 |
-
def __call__(self, data: Any) -> Dict[str,
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
"cfg_scale": 7,
|
| 48 |
-
"alwayson_scripts": {
|
| 49 |
-
"controlnet": {
|
| 50 |
-
"args": [
|
| 51 |
-
{
|
| 52 |
-
"enabled": True,
|
| 53 |
-
"input_image": "image in base64",
|
| 54 |
-
"model": "control_sd15_depth [fef5e48e]",
|
| 55 |
-
"control_mode": "Balanced"
|
| 56 |
-
}
|
| 57 |
-
]
|
| 58 |
-
}
|
| 59 |
-
}
|
| 60 |
-
}
|
| 61 |
-
|
| 62 |
-
# Extract parameters from the payload
|
| 63 |
-
prompt = data.get("prompt", None)
|
| 64 |
-
negative_prompt = data.get("negative_prompt", None)
|
| 65 |
-
width = data.get("width", None)
|
| 66 |
-
height = data.get("height", None)
|
| 67 |
-
num_inference_steps = data.get("steps", 30)
|
| 68 |
-
guidance_scale = data.get("cfg_scale", 7)
|
| 69 |
|
| 70 |
-
#
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
out = self.pipe(
|
| 75 |
-
prompt=prompt,
|
| 76 |
negative_prompt=negative_prompt,
|
| 77 |
-
|
|
|
|
| 78 |
guidance_scale=guidance_scale,
|
| 79 |
num_images_per_prompt=1,
|
| 80 |
height=height,
|
| 81 |
width=width,
|
| 82 |
-
controlnet_conditioning_scale=
|
| 83 |
-
generator=self.generator
|
| 84 |
)
|
| 85 |
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
input_image_base64 = controlnet_config.get("input_image", "")
|
| 92 |
-
input_image = self.decode_base64_image(input_image_base64)
|
| 93 |
-
controlnet_model = controlnet_config.get("model", "")
|
| 94 |
-
controlnet_control_mode = controlnet_config.get("control_mode", "")
|
| 95 |
-
|
| 96 |
-
processed_image = self.process_with_controlnet(generated_image, input_image, controlnet_model, controlnet_control_mode)
|
| 97 |
-
else:
|
| 98 |
-
processed_image = generated_image
|
| 99 |
-
|
| 100 |
-
# Return the final processed image as base64
|
| 101 |
-
return {"image": self.encode_base64_image(processed_image)}
|
| 102 |
-
|
| 103 |
-
def process_with_controlnet(self, generated_image, input_image, model, control_mode):
|
| 104 |
-
# Simulated controlnet processing (replace with actual implementation)
|
| 105 |
-
# Here, we're just using the input_image as-is. Replace this with your controlnet logic.
|
| 106 |
-
return input_image
|
| 107 |
-
|
| 108 |
-
def encode_base64_image(self, image):
|
| 109 |
-
# Encode the PIL Image to base64
|
| 110 |
-
buffer = BytesIO()
|
| 111 |
-
image.save(buffer, format="PNG")
|
| 112 |
-
return base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 113 |
-
|
| 114 |
def decode_base64_image(self, image_string):
|
| 115 |
base64_image = base64.b64decode(image_string)
|
| 116 |
buffer = BytesIO(base64_image)
|
|
|
|
| 1 |
+
from typing import Dict, List, Any
|
| 2 |
import base64
|
| 3 |
from PIL import Image
|
| 4 |
from io import BytesIO
|
| 5 |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
|
| 6 |
import torch
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
import numpy as np
|
| 10 |
+
import cv2
|
| 11 |
import controlnet_hinter
|
| 12 |
|
| 13 |
# set device
|
| 14 |
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 15 |
if device.type != 'cuda':
|
| 16 |
+
raise ValueError("need to run on GPU")
|
| 17 |
# set mixed precision dtype
|
| 18 |
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
|
| 19 |
|
| 20 |
+
# controlnet mapping for controlnet id and control hinter
|
| 21 |
CONTROLNET_MAPPING = {
|
| 22 |
+
"canny_edge": {
|
| 23 |
+
"model_id": "lllyasviel/sd-controlnet-canny",
|
| 24 |
+
"hinter": controlnet_hinter.hint_canny
|
| 25 |
+
},
|
| 26 |
+
"pose": {
|
| 27 |
+
"model_id": "lllyasviel/sd-controlnet-openpose",
|
| 28 |
+
"hinter": controlnet_hinter.hint_openpose
|
| 29 |
+
},
|
| 30 |
"depth": {
|
| 31 |
"model_id": "lllyasviel/sd-controlnet-depth",
|
| 32 |
"hinter": controlnet_hinter.hint_depth
|
| 33 |
+
},
|
| 34 |
+
"scribble": {
|
| 35 |
+
"model_id": "lllyasviel/sd-controlnet-scribble",
|
| 36 |
+
"hinter": controlnet_hinter.hint_scribble,
|
| 37 |
+
},
|
| 38 |
+
"segmentation": {
|
| 39 |
+
"model_id": "lllyasviel/sd-controlnet-seg",
|
| 40 |
+
"hinter": controlnet_hinter.hint_segmentation,
|
| 41 |
+
},
|
| 42 |
+
"normal": {
|
| 43 |
+
"model_id": "lllyasviel/sd-controlnet-normal",
|
| 44 |
+
"hinter": controlnet_hinter.hint_normal,
|
| 45 |
+
},
|
| 46 |
+
"hed": {
|
| 47 |
+
"model_id": "lllyasviel/sd-controlnet-hed",
|
| 48 |
+
"hinter": controlnet_hinter.hint_hed,
|
| 49 |
+
},
|
| 50 |
+
"hough": {
|
| 51 |
+
"model_id": "lllyasviel/sd-controlnet-mlsd",
|
| 52 |
+
"hinter": controlnet_hinter.hint_hough,
|
| 53 |
}
|
| 54 |
}
|
| 55 |
|
| 56 |
+
|
| 57 |
class EndpointHandler():
|
| 58 |
def __init__(self, path=""):
|
| 59 |
# define default controlnet id and load controlnet
|
| 60 |
self.control_type = "depth"
|
| 61 |
+
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],torch_dtype=dtype).to(device)
|
| 62 |
+
|
| 63 |
+
# Load StableDiffusionControlNetPipeline
|
| 64 |
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
|
| 65 |
+
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
|
| 66 |
+
controlnet=self.controlnet,
|
| 67 |
torch_dtype=dtype,
|
| 68 |
safety_checker=None).to(device)
|
| 69 |
# Define Generator with seed
|
| 70 |
self.generator = torch.Generator(device="cpu").manual_seed(3)
|
| 71 |
|
| 72 |
+
def __call__(self, data: Any) -> List[List[Dict[str, float]]]:
|
| 73 |
+
"""
|
| 74 |
+
:param data: A dictionary contains `inputs` and optional `image` field.
|
| 75 |
+
:return: A dictionary with `image` field contains image in base64.
|
| 76 |
+
"""
|
| 77 |
+
prompt = data.pop("inputs", None)
|
| 78 |
+
image = data.pop("image", None)
|
| 79 |
+
controlnet_type = data.pop("controlnet_type", None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
# Check if neither prompt nor image is provided
|
| 82 |
+
if prompt is None and image is None:
|
| 83 |
+
return {"error": "Please provide a prompt and base64 encoded image."}
|
| 84 |
+
|
| 85 |
+
# Check if a new controlnet is provided
|
| 86 |
+
if controlnet_type is not None and controlnet_type != self.control_type:
|
| 87 |
+
print(f"changing controlnet from {self.control_type} to {controlnet_type} using {CONTROLNET_MAPPING[controlnet_type]['model_id']} model")
|
| 88 |
+
self.control_type = controlnet_type
|
| 89 |
+
self.controlnet = ControlNetModel.from_pretrained(CONTROLNET_MAPPING[self.control_type]["model_id"],
|
| 90 |
+
torch_dtype=dtype).to(device)
|
| 91 |
+
self.pipe.controlnet = self.controlnet
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
# hyperparamters
|
| 95 |
+
num_inference_steps = data.pop("num_inference_steps", 30)
|
| 96 |
+
guidance_scale = data.pop("guidance_scale", 7.5)
|
| 97 |
+
negative_prompt = data.pop("negative_prompt", None)
|
| 98 |
+
height = data.pop("height", None)
|
| 99 |
+
width = data.pop("width", None)
|
| 100 |
+
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
|
| 101 |
+
|
| 102 |
+
# process image
|
| 103 |
+
image = self.decode_base64_image(image)
|
| 104 |
+
control_image = CONTROLNET_MAPPING[self.control_type]["hinter"](image)
|
| 105 |
+
|
| 106 |
+
# run inference pipeline
|
| 107 |
out = self.pipe(
|
| 108 |
+
prompt=prompt,
|
| 109 |
negative_prompt=negative_prompt,
|
| 110 |
+
image=control_image,
|
| 111 |
+
num_inference_steps=num_inference_steps,
|
| 112 |
guidance_scale=guidance_scale,
|
| 113 |
num_images_per_prompt=1,
|
| 114 |
height=height,
|
| 115 |
width=width,
|
| 116 |
+
controlnet_conditioning_scale=controlnet_conditioning_scale,
|
| 117 |
+
generator=self.generator
|
| 118 |
)
|
| 119 |
|
| 120 |
+
|
| 121 |
+
# return first generate PIL image
|
| 122 |
+
return out.images[0]
|
| 123 |
+
|
| 124 |
+
# helper to decode input image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 125 |
def decode_base64_image(self, image_string):
|
| 126 |
base64_image = base64.b64decode(image_string)
|
| 127 |
buffer = BytesIO(base64_image)
|