ControlNet-endpoint / handler.py
Anwar786's picture
Update handler.py
05773fe verified
raw
history blame
5.7 kB
from typing import Dict, List, Any
import base64
from PIL import Image
from io import BytesIO
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
import torch
import numpy as np
import cv2
import controlnet_hinter
# set device
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
if device.type != 'cuda':
raise ValueError("Need to run on GPU")
# set mixed precision dtype
dtype = torch.bfloat16 if torch.cuda.get_device_capability()[0] == 8 else torch.float16
# controlnet mapping for controlnet id and control hinter
CONTROLNET_MAPPING = {
"canny_edge": {
"model_id": "lllyasviel/sd-controlnet-canny",
"hinter": controlnet_hinter.hint_canny
},
"pose": {
"model_id": "lllyasviel/sd-controlnet-openpose",
"hinter": controlnet_hinter.hint_openpose
},
"depth": {
"model_id": "lllyasviel/sd-controlnet-depth",
"hinter": controlnet_hinter.hint_depth
},
"scribble": {
"model_id": "lllyasviel/sd-controlnet-scribble",
"hinter": controlnet_hinter.hint_scribble,
},
"segmentation": {
"model_id": "lllyasviel/sd-controlnet-seg",
"hinter": controlnet_hinter.hint_segmentation,
},
"normal": {
"model_id": "lllyasviel/sd-controlnet-normal",
"hinter": controlnet_hinter.hint_normal,
},
"hed": {
"model_id": "lllyasviel/sd-controlnet-hed",
"hinter": controlnet_hinter.hint_hed,
},
"hough": {
"model_id": "lllyasviel/sd-controlnet-mlsd",
"hinter": controlnet_hinter.hint_hough,
}
}
class EndpointHandler():
"""
A class to handle endpoint logic.
"""
def __init__(self, path=""):
# define default controlnet id and load controlnet
self.control_type = "depth"
self.controlnet = ControlNetModel.from_pretrained(controlnet_mapping[self.control_type]["model_id"], torch_dtype=dtype).to(device)
# Load StableDiffusionControlNetPipeline
self.stable_diffusion_id = "runwayml/stable-diffusion-v1-5"
self.pipe = StableDiffusionControlNetPipeline.from_pretrained(self.stable_diffusion_id,
controlnet=self.controlnet,
torch_dtype=dtype,
safety_checker=None).to(device)
# Define Generator with seed
self.generator = torch.Generator(device="cpu").manual_seed(3)
def __call__(self, data: Any) -> None:
"""
Process input data and perform inference.
:param data: A dictionary containing `inputs` and optional `image_path` field.
:return: None
"""
prompt = data.pop("inputs", None)
image_path = data.pop("image_path", None)
controlnet_type = data.pop("controlnet_type", None)
# Check if neither prompt nor image path is provided
if prompt is None and image_path is None:
raise ValueError("Please provide a prompt and either an image path or a base64-encoded image.")
# Check if a new controlnet is provided
if controlnet_type is not None and controlnet_type != self.control_type:
print(f"Changing controlnet from {self.control_type} to {controlnet_type} using {controlnet_mapping[controlnet_type]['model_id']} model")
self.control_type = controlnet_type
self.controlnet = ControlNetModel.from_pretrained(controlnet_mapping[self.control_type]["model_id"],
torch_dtype=dtype).to(device)
self.pipe.controlnet = self.controlnet
# hyperparameters
num_inference_steps = data.pop("num_inference_steps", 30)
guidance_scale = data.pop("guidance_scale", 7.5)
negative_prompt = data.pop("negative_prompt", None)
height = data.pop("height", None)
width = data.pop("width", None)
controlnet_conditioning_scale = data.pop("controlnet_conditioning_scale", 1.0)
# process image
if image_path is not None:
# Load the image from the specified path
image = Image.open(image_path)
else:
# Decode base64-encoded image
image = self.decode_base64_image(data.pop("image", ""))
control_image = controlnet_mapping[self.control_type]["hinter"](image)
# run inference pipeline
out = self.pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=control_image,
num_inference_steps=num_inference_steps,
guidance_scale=guidance_scale,
num_images_per_prompt=1,
height=height,
width=width,
controlnet_conditioning_scale=controlnet_conditioning_scale,
generator=self.generator
)
# save the generated image as a JPEG file
output_image = out.images[0]
output_image.save("output.jpg", format="JPEG")
def decode_base64_image(self, image_string):
base64_image = base64.b64decode(image_string)
buffer = BytesIO(base64_image)
image = Image.open(buffer)
return image
# Example usage
payload = {
"inputs": "Your prompt here",
"image_path": "path/to/your/image.jpg",
"controlnet_type": "depth",
"num_inference_steps": 30,
"guidance_scale": 7.5,
"negative_prompt": None,
"height": None,
"width": None,
"controlnet_conditioning_scale": 1.0,
}
handler = EndpointHandler()
handler(payload)