File size: 5,036 Bytes
dc2da49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f85fb3c
 
dc2da49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d1a8027
 
 
dc2da49
 
 
f85fb3c
dc2da49
 
 
 
 
f85fb3c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc2da49
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
---
license: mit
base_model: camembert-base
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: camembert_classification_tools_qlora
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# camembert_classification_tools_qlora

This model is a fine-tuned version of [camembert-base](https://huggingface.co/camembert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7844
- Accuracy: 0.7

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 24
- eval_batch_size: 192
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| No log        | 1.0   | 5    | 2.0913          | 0.05     |
| No log        | 2.0   | 10   | 2.1000          | 0.05     |
| No log        | 3.0   | 15   | 2.0985          | 0.1      |
| No log        | 4.0   | 20   | 2.0854          | 0.15     |
| No log        | 5.0   | 25   | 2.0667          | 0.275    |
| No log        | 6.0   | 30   | 2.0459          | 0.35     |
| No log        | 7.0   | 35   | 2.0092          | 0.325    |
| No log        | 8.0   | 40   | 1.9610          | 0.375    |
| No log        | 9.0   | 45   | 1.9182          | 0.4      |
| No log        | 10.0  | 50   | 1.8769          | 0.425    |
| No log        | 11.0  | 55   | 1.8349          | 0.425    |
| No log        | 12.0  | 60   | 1.7894          | 0.425    |
| No log        | 13.0  | 65   | 1.7395          | 0.425    |
| No log        | 14.0  | 70   | 1.6914          | 0.425    |
| No log        | 15.0  | 75   | 1.6472          | 0.45     |
| No log        | 16.0  | 80   | 1.6029          | 0.45     |
| No log        | 17.0  | 85   | 1.5619          | 0.475    |
| No log        | 18.0  | 90   | 1.5190          | 0.5      |
| No log        | 19.0  | 95   | 1.4621          | 0.575    |
| No log        | 20.0  | 100  | 1.4180          | 0.55     |
| No log        | 21.0  | 105  | 1.3786          | 0.575    |
| No log        | 22.0  | 110  | 1.3384          | 0.575    |
| No log        | 23.0  | 115  | 1.2975          | 0.625    |
| No log        | 24.0  | 120  | 1.2561          | 0.65     |
| No log        | 25.0  | 125  | 1.2164          | 0.675    |
| No log        | 26.0  | 130  | 1.1839          | 0.675    |
| No log        | 27.0  | 135  | 1.1602          | 0.65     |
| No log        | 28.0  | 140  | 1.1304          | 0.625    |
| No log        | 29.0  | 145  | 1.1029          | 0.625    |
| No log        | 30.0  | 150  | 1.0744          | 0.625    |
| No log        | 31.0  | 155  | 1.0482          | 0.625    |
| No log        | 32.0  | 160  | 1.0197          | 0.675    |
| No log        | 33.0  | 165  | 0.9967          | 0.725    |
| No log        | 34.0  | 170  | 0.9793          | 0.725    |
| No log        | 35.0  | 175  | 0.9640          | 0.725    |
| No log        | 36.0  | 180  | 0.9502          | 0.675    |
| No log        | 37.0  | 185  | 0.9390          | 0.65     |
| No log        | 38.0  | 190  | 0.9183          | 0.7      |
| No log        | 39.0  | 195  | 0.8987          | 0.725    |
| No log        | 40.0  | 200  | 0.8817          | 0.775    |
| No log        | 41.0  | 205  | 0.8684          | 0.725    |
| No log        | 42.0  | 210  | 0.8611          | 0.7      |
| No log        | 43.0  | 215  | 0.8607          | 0.7      |
| No log        | 44.0  | 220  | 0.8592          | 0.7      |
| No log        | 45.0  | 225  | 0.8471          | 0.725    |
| No log        | 46.0  | 230  | 0.8306          | 0.725    |
| No log        | 47.0  | 235  | 0.8189          | 0.75     |
| No log        | 48.0  | 240  | 0.8136          | 0.725    |
| No log        | 49.0  | 245  | 0.8142          | 0.7      |
| No log        | 50.0  | 250  | 0.8092          | 0.7      |
| No log        | 51.0  | 255  | 0.8053          | 0.75     |
| No log        | 52.0  | 260  | 0.7995          | 0.75     |
| No log        | 53.0  | 265  | 0.7917          | 0.75     |
| No log        | 54.0  | 270  | 0.7901          | 0.725    |
| No log        | 55.0  | 275  | 0.7910          | 0.7      |
| No log        | 56.0  | 280  | 0.7904          | 0.7      |
| No log        | 57.0  | 285  | 0.7884          | 0.7      |
| No log        | 58.0  | 290  | 0.7863          | 0.7      |
| No log        | 59.0  | 295  | 0.7851          | 0.7      |
| No log        | 60.0  | 300  | 0.7844          | 0.7      |


### Framework versions

- Transformers 4.34.0
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.14.1