Upload loan.py
Browse files
loan.py
ADDED
|
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# -*- coding: utf-8 -*-
|
| 2 |
+
"""loan.py"""
|
| 3 |
+
|
| 4 |
+
# Import necessary libraries
|
| 5 |
+
import numpy as np
|
| 6 |
+
import pandas as pd
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
import warnings
|
| 10 |
+
from sklearn.preprocessing import OneHotEncoder, StandardScaler
|
| 11 |
+
from sklearn.compose import ColumnTransformer
|
| 12 |
+
from sklearn.pipeline import Pipeline
|
| 13 |
+
from sklearn.model_selection import train_test_split
|
| 14 |
+
from sklearn.linear_model import LogisticRegression
|
| 15 |
+
from imblearn.over_sampling import SMOTE
|
| 16 |
+
from sklearn.metrics import classification_report, confusion_matrix, roc_auc_score
|
| 17 |
+
import gradio as gr
|
| 18 |
+
from imblearn.pipeline import Pipeline as ImbPipeline
|
| 19 |
+
import joblib
|
| 20 |
+
from datasets import load_dataset # Import the Hugging Face dataset library
|
| 21 |
+
|
| 22 |
+
# Suppress specific FutureWarnings
|
| 23 |
+
warnings.simplefilter(action='ignore', category=FutureWarning)
|
| 24 |
+
|
| 25 |
+
# Load dataset directly from Hugging Face
|
| 26 |
+
dataset = load_dataset("AnguloM/loan_data")
|
| 27 |
+
|
| 28 |
+
# Access the train and test data
|
| 29 |
+
df_train = dataset['train']
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
# Convert dataset to pandas DataFrame
|
| 33 |
+
df_train = pd.DataFrame(df_train)
|
| 34 |
+
|
| 35 |
+
from sklearn.model_selection import train_test_split
|
| 36 |
+
|
| 37 |
+
df_train, df_test = train_test_split(df_train, test_size=0.2, random_state=42)
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# Create a summary DataFrame with data types and non-null counts
|
| 41 |
+
info_df = pd.DataFrame({
|
| 42 |
+
"Column": df_train.columns,
|
| 43 |
+
"Data Type": df_train.dtypes,
|
| 44 |
+
"Non-Null Count": df_train.notnull().sum(),
|
| 45 |
+
"Total Count": len(df_train)
|
| 46 |
+
})
|
| 47 |
+
|
| 48 |
+
# Calculate the percentage of non-null values in each column
|
| 49 |
+
info_df['Non-Null Percentage'] = (info_df['Non-Null Count'] / info_df['Total Count'] * 100).round(2).astype(str) + '%'
|
| 50 |
+
|
| 51 |
+
# Style the table
|
| 52 |
+
info_df_styled = info_df.style.set_properties(**{'text-align': 'left'}).set_table_styles(
|
| 53 |
+
[{'selector': 'th', 'props': [('background-color', '#d9edf7'), ('color', '#31708f'), ('font-weight', 'bold')]}]
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Apply background gradient only to numerical columns
|
| 57 |
+
info_df_styled = info_df_styled.background_gradient(subset=['Non-Null Count', 'Total Count'], cmap="Oranges")
|
| 58 |
+
|
| 59 |
+
# Create a widget to display the styled table
|
| 60 |
+
table_widget = widgets.Output()
|
| 61 |
+
with table_widget:
|
| 62 |
+
display(info_df_styled)
|
| 63 |
+
|
| 64 |
+
# Widget for the missing values message
|
| 65 |
+
message_widget = widgets.Output()
|
| 66 |
+
with message_widget:
|
| 67 |
+
print(f"\033[1;31mMissing values detected in any columns:\033[0m\n{df_train.isnull().sum()}")
|
| 68 |
+
|
| 69 |
+
# Display both widgets (table and missing values message) side by side
|
| 70 |
+
widgets.HBox([table_widget, message_widget])
|
| 71 |
+
|
| 72 |
+
# Convert relevant columns to categorical if necessary
|
| 73 |
+
df_train['not.fully.paid'] = df_train['not.fully.paid'].astype('category')
|
| 74 |
+
|
| 75 |
+
# Select only numeric columns for correlation matrix calculation
|
| 76 |
+
df_numeric = df_train.select_dtypes(include=[float, int])
|
| 77 |
+
|
| 78 |
+
# Create a 1x2 grid for the plots
|
| 79 |
+
plt.figure(figsize=(12, 6))
|
| 80 |
+
|
| 81 |
+
# Create subplots for the correlation matrix and target distribution
|
| 82 |
+
fig, axes = plt.subplots(1, 2, figsize=(14, 6))
|
| 83 |
+
|
| 84 |
+
# Plot Correlation Matrix
|
| 85 |
+
sns.heatmap(df_numeric.corr(), annot=True, cmap='coolwarm', ax=axes[0], fmt='.2f')
|
| 86 |
+
axes[0].set_title('Correlation Matrix')
|
| 87 |
+
|
| 88 |
+
# Plot Distribution of Loan Repayment Status (Target Variable)
|
| 89 |
+
sns.countplot(x='not.fully.paid', data=df_train, ax=axes[1])
|
| 90 |
+
axes[1].set_title('Distribution of Loan Repayment Status')
|
| 91 |
+
|
| 92 |
+
# Show the plots
|
| 93 |
+
plt.tight_layout() # Adjusts the layout to avoid overlapping
|
| 94 |
+
plt.show()
|
| 95 |
+
|
| 96 |
+
# OneHotEncoding for categorical columns and scaling for numeric columns
|
| 97 |
+
# Prepare data for training
|
| 98 |
+
data = df_train.copy()
|
| 99 |
+
|
| 100 |
+
# Separate features (X) and target (y)
|
| 101 |
+
X = data.drop('credit.policy', axis=1) # Drop the target column
|
| 102 |
+
y = data['credit.policy'] # Target variable
|
| 103 |
+
|
| 104 |
+
# Split the data into training (80%) and testing (20%) sets
|
| 105 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 106 |
+
|
| 107 |
+
# Preprocessing pipeline (scaling numeric features and encoding categorical features)
|
| 108 |
+
preprocessor = ColumnTransformer(
|
| 109 |
+
transformers=[
|
| 110 |
+
('num', StandardScaler(), ['int.rate', 'installment', 'log.annual.inc', 'dti', 'fico',
|
| 111 |
+
'days.with.cr.line', 'revol.bal', 'revol.util', 'inq.last.6mths',
|
| 112 |
+
'delinq.2yrs', 'pub.rec']),
|
| 113 |
+
('cat', OneHotEncoder(), ['purpose']) # Ensure 'purpose' is included in categorical transformations
|
| 114 |
+
]
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
# Create an imbalanced-learn pipeline that includes SMOTE and Logistic Regression
|
| 118 |
+
imb_model_pipeline = ImbPipeline(steps=[
|
| 119 |
+
('preprocessor', preprocessor), # First, preprocess the data (scale numeric, encode categorical)
|
| 120 |
+
('smote', SMOTE(random_state=42, sampling_strategy=0.5)), # Apply SMOTE to balance the dataset
|
| 121 |
+
('classifier', LogisticRegression(max_iter=1000000)) # Logistic Regression classifier
|
| 122 |
+
])
|
| 123 |
+
|
| 124 |
+
# Train the model with the full pipeline (preprocessing + SMOTE + model training)
|
| 125 |
+
imb_model_pipeline.fit(X_train, y_train)
|
| 126 |
+
|
| 127 |
+
# Make predictions on the test data
|
| 128 |
+
y_pred = imb_model_pipeline.predict(X_test)
|
| 129 |
+
y_pred_proba = imb_model_pipeline.predict_proba(X_test)[:, 1] # Get probabilities for the positive class
|
| 130 |
+
|
| 131 |
+
# Adjust the decision threshold to improve recall of the positive class
|
| 132 |
+
threshold = 0.3
|
| 133 |
+
y_pred_adjusted = (y_pred_proba >= threshold).astype(int)
|
| 134 |
+
|
| 135 |
+
# Evaluate the model using classification report
|
| 136 |
+
classification_rep = classification_report(y_test, y_pred_adjusted, output_dict=True)
|
| 137 |
+
|
| 138 |
+
# Convert the classification report to a DataFrame for display as a table with styles
|
| 139 |
+
classification_df = pd.DataFrame(classification_rep).transpose()
|
| 140 |
+
classification_df_styled = classification_df.style.set_properties(**{'text-align': 'center'}).set_table_styles(
|
| 141 |
+
[{'selector': 'th', 'props': [('background-color', '#d9edf7'), ('color', '#31708f'), ('font-weight', 'bold')]}]
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
# Display the classification report as a styled table in a widget
|
| 145 |
+
table_widget = widgets.Output()
|
| 146 |
+
with table_widget:
|
| 147 |
+
display(classification_df_styled)
|
| 148 |
+
|
| 149 |
+
# Calculate the AUC-ROC score
|
| 150 |
+
auc_roc = roc_auc_score(y_test, y_pred_proba)
|
| 151 |
+
|
| 152 |
+
# Widget for the AUC-ROC
|
| 153 |
+
auc_widget = widgets.Output()
|
| 154 |
+
with auc_widget:
|
| 155 |
+
print("\033[1;31mAUC-ROC:\033[0m", f"{auc_roc:.4f}")
|
| 156 |
+
|
| 157 |
+
# Display both widgets (table and AUC-ROC message) side by side
|
| 158 |
+
display(widgets.VBox([table_widget, auc_widget]))
|
| 159 |
+
|
| 160 |
+
# Display the confusion matrix
|
| 161 |
+
cm = confusion_matrix(y_test, y_pred_adjusted)
|
| 162 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
|
| 163 |
+
plt.title("Confusion Matrix")
|
| 164 |
+
plt.xlabel("Predicted")
|
| 165 |
+
plt.ylabel("Actual")
|
| 166 |
+
plt.show()
|
| 167 |
+
|
| 168 |
+
from huggingface_hub import hf_hub_download
|
| 169 |
+
import joblib
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
model_path = hf_hub_download(repo_id="AnguloM/LoanSmart_Predict_Loan_Approval_with_Confidence", filename="loan_approval_pipeline.pkl")
|
| 173 |
+
|
| 174 |
+
|
| 175 |
+
pipeline = joblib.load(model_path)
|
| 176 |
+
# Prediction function
|
| 177 |
+
def predict_approval(int_rate, installment, log_annual_inc, dti, fico,
|
| 178 |
+
days_with_cr_line, revol_bal, revol_util, inq_last_6mths,
|
| 179 |
+
delinq_2yrs, pub_rec, purpose):
|
| 180 |
+
# Prepare the input as a DataFrame
|
| 181 |
+
input_data = pd.DataFrame([[int_rate, installment, log_annual_inc, dti, fico,
|
| 182 |
+
days_with_cr_line, revol_bal, revol_util,
|
| 183 |
+
inq_last_6mths, delinq_2yrs, pub_rec, purpose]],
|
| 184 |
+
columns=['int.rate', 'installment', 'log.annual.inc',
|
| 185 |
+
'dti', 'fico', 'days.with.cr.line', 'revol.bal',
|
| 186 |
+
'revol.util', 'inq.last.6mths', 'delinq.2yrs',
|
| 187 |
+
'pub.rec', 'purpose'])
|
| 188 |
+
# Make loan approval prediction
|
| 189 |
+
result = pipeline.predict(input_data)
|
| 190 |
+
return result[0]
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
# Create input components for the Gradio interface
|
| 194 |
+
inputs = [
|
| 195 |
+
gr.Slider(0.0, 25.0, step=0.1, label="Interest Rate (%)"),
|
| 196 |
+
gr.Slider(0.0, 1000.0, step=10.0, label="Installment Amount"),
|
| 197 |
+
gr.Slider(0.0, 15.0, step=0.1, label="Log of Annual Income"),
|
| 198 |
+
gr.Slider(0.0, 50.0, step=0.1, label="Debt-to-Income Ratio"),
|
| 199 |
+
gr.Slider(300, 850, step=1, label="FICO Credit Score"),
|
| 200 |
+
gr.Slider(0.0, 50000.0, step=100.0, label="Days with Credit Line"),
|
| 201 |
+
gr.Slider(0.0, 100000.0, step=500.0, label="Revolving Balance"),
|
| 202 |
+
gr.Slider(0.0, 150.0, step=0.1, label="Revolving Utilization (%)"),
|
| 203 |
+
gr.Slider(0, 10, step=1, label="Recent Inquiries (Last 6 Months)"),
|
| 204 |
+
gr.Slider(0, 10, step=1, label="Delinquencies in Last 2 Years"),
|
| 205 |
+
gr.Slider(0, 5, step=1, label="Public Records"),
|
| 206 |
+
gr.Dropdown(["credit_card", "debt_consolidation", "educational",
|
| 207 |
+
"home_improvement", "major_purchase", "small_business",
|
| 208 |
+
"other"], label="Loan Purpose")
|
| 209 |
+
]
|
| 210 |
+
|
| 211 |
+
# Create the Gradio interface for loan approval prediction
|
| 212 |
+
gr.Interface(fn=predict_approval, inputs=inputs, outputs="text").launch(share=True)
|