File size: 18,158 Bytes
89b1f42 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import json
import gc
import psutil
import yaml
import wget
import json
import os, sys
from glob import glob
from yolo_cam.eigen_cam import EigenCAM
from yolo_cam.utils.image import show_cam_on_image
import torch
from torchvision.utils import make_grid
import wandb
import cv2
import numpy as np
import argparse
def parse_args():
parser = argparse.ArgumentParser(description="Transfer learning script.")
parser.add_argument("--dataset", type=str, required=True, help='Dataset name to be used')
parser.add_argument("--epochs", type=int, default=1000, help="Number of epochs")
parser.add_argument("--batch", type=int, default=16, help="Batch size")
parser.add_argument("--imgsz", type=int, default=640, help="Image size")
parser.add_argument("--patience", type=int, default=30, help="Patience for early stopping")
parser.add_argument("--cache", type=str, default="ram", help="Cache option")
parser.add_argument("--pretrained", type=bool, default=False, help="Use pretrained weights")
parser.add_argument("--cos_lr", type=bool, default=False, help="Use cosine learning rate")
parser.add_argument("--profile", type=bool, default=False, help="Profile the training")
parser.add_argument("--plots", type=bool, default=True, help="Generate plots")
parser.add_argument("--resume", type=bool, default=False, help="Resume run")
parser.add_argument("--augment", type=bool, default=False, help="Apply augmentation techniques during training")
parser.add_argument("--model", type=str, required=True, help="Model name")
parser.add_argument("--run", type=str, required=True, help="Run mode")
return parser.parse_args()
args = parse_args()
dict_to_freeze = {"Finetuning": 0,
"freeze_[P1-P3]": 4,
"freeze_Backbone": 9,
"freeze_[P1-23]": 23
}
layers_to_freeze = dict_to_freeze[args.run]
##--------------------------------------------/USER DEFINE
mem_torch = 0
RAM_used = 0
RAM_available = 0
grad_norm = []
cam_images = {}
first_batch_paths = None
args_model = {
"epochs": args.epochs, "batch": args.batch, "imgsz": args.imgsz,
"patience": args.patience, "cache": args.cache, "pretrained": args.pretrained,
"cos_lr": args.cos_lr, "profile": args.profile, "plots": args.plots}
def freeze_layer(trainer):
model = trainer.model
num_freeze = layers_to_freeze
print(f"Freezing {num_freeze} layers")
if num_freeze:
freeze = [f'model.{x}.' for x in range(num_freeze)] # layers to freeze
for k, v in model.named_parameters():
v.requires_grad = True # train all layers
if any(x in k for x in freeze):
print(f'freezing {k}')
v.requires_grad = False # Non trainable layer
print(f"{num_freeze} layers are freezed.")
model.info(detailed=True)
def get_gpu_usage(param):
global mem_torch
global RAM_used
global RAM_available
mem_torch = float(torch.cuda.memory_reserved() / 1E6 if torch.cuda.is_available() else 0) #(MB)
RAM_used = float(psutil.virtual_memory().used / 1e9)
RAM_available = float(psutil.virtual_memory().available / 1e9)
def compute_gradients_L2_norm(trainer):
model = trainer.model
global grad_norm
temp_grad = 0.0
for _, params in model.named_parameters():
if params.grad is not None:
temp_grad += params.grad.data.norm(2).item() ** 2
grad_norm.append(float(temp_grad ** 0.5))
def save_val_images_paths(trainer):
global first_batch_paths
first_batch_paths = next(iter(trainer.validator.dataloader))['im_file'][:args.batch]
def compute_grad_CAM(trainer):
global global_step
global cam_images
global first_batch_paths
if ((global_step in [1, 2, 3, 4, 5] or global_step %10 == 0) and global_step <= args.epochs):
try:
model_copy = YOLO(f"./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/weights/last.pt")
except FileNotFoundError:
if(global_step!=0):
print(f"No such file or directory: /experiment/runs/{args.dataset}/{args.model}/train_{run_name}/weights/last.pt")
global_step += 1
return
iterator = [("C2fCIB [-2]", -2),("Conv [-4]", -4), ("SPPF", 9), ("PSA", 10)] if "v10" in args.model else [("Conv [-2]", -2),("Conv [-4]", -4), ("SPPF", 9)]
json_preds_gradCAM = {layer[0] : None for layer in iterator}
for layer_name, layer_index in iterator:
cam_images[layer_name] = []
target_layers = [model_copy.model.model[layer_index]]
for path_to_image in first_batch_paths:
image_name = path_to_image.split("/")[-1].split(".")[0]
os.makedirs(f"./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/outs/gradCAMs_inferences/images/{image_name}/{layer_name}", exist_ok=True)
img = cv2.cvtColor(cv2.imread(path_to_image), cv2.COLOR_BGR2RGB)
#img = cv2.resize(img, (640, 640))
rgb_img = img.copy()
img = np.float32(img) / 255
cam = EigenCAM(model_copy, target_layers, task='od')
grayscale_cam = cam(rgb_img)[0, :, :]
temp_cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True)
cam = EigenCAM(model_copy, target_layers, task='od')
grayscale_cam = cam(rgb_img)[0, :, :]
temp_cam_image = show_cam_on_image(img, grayscale_cam, use_rgb=True)
if (not json_preds_gradCAM[layer_name]):
json_preds_gradCAM[layer_name] = []
boxes = model_copy.predictor.results[0].boxes.xyxy.detach().cpu().numpy() # Get boxes as numpy array
confs = model_copy.predictor.results[0].boxes.conf.detach().cpu().numpy() # Get boxes as numpy array
cam_image_annotated = temp_cam_image.copy()
cv2.imwrite(f"./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/outs/gradCAMs_inferences/images/{image_name}/{layer_name}/{image_name}_gs_{global_step}.jpg", cv2.cvtColor(temp_cam_image, cv2.COLOR_BGR2RGB))
for i, box in enumerate(boxes):
cam_image_annotated = cv2.rectangle(cam_image_annotated,
(int(box[0]), int(box[1])),
(int(box[2]), int(box[3])),
(0, 255, 0), 2)
# Prepare confidence text
conf_text = f"{confs[i]:.2f}"
# Choose the position for the text (top-left corner of the rectangle)
text_position = (int(box[0]), int(box[1]) - 5) # Slightly above the top-left corner
# Get text size
(text_width, text_height), baseline = cv2.getTextSize(conf_text,
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
1)
# Draw a filled rectangle as background for the text
background_tl = (text_position[0], text_position[1] - text_height - baseline)
background_br = (text_position[0] + text_width, text_position[1] + baseline)
cam_image_annotated = cv2.rectangle(cam_image_annotated,
background_tl,
background_br,
(0, 255, 0),
cv2.FILLED)
# Add text to the image
cam_image_annotated = cv2.putText(cam_image_annotated,
conf_text,
text_position,
cv2.FONT_HERSHEY_SIMPLEX,
0.5, # Font scale
(0, 0, 0), # White color
1, # Thickness
cv2.LINE_AA) # Anti-aliased line
json_preds_gradCAM[layer_name].append({"image_name": image_name,
"cls" : model_copy.predictor.results[0].boxes.cls.detach().clone().tolist(),
"conf" : model_copy.predictor.results[0].boxes.conf.detach().clone().tolist(),
"boxes(xywhn)" : model_copy.predictor.results[0].boxes.xywhn.detach().clone().tolist(),
"orig_shape": model_copy.predictor.results[0].boxes.orig_shape})
cam_images[layer_name].append(torch.from_numpy(cv2.resize(temp_cam_image, (640,640))).permute(2, 0, 1))
cv2.imwrite(f"./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/outs/gradCAMs_inferences/images/{image_name}/{layer_name}/{image_name}_annotated_gs_{global_step}.jpg",
cv2.cvtColor(cam_image_annotated, cv2.COLOR_BGR2RGB))
model_copy = None
cam = None
with open(f'./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/outs/gradCAMs_inferences/gradCAMS_inference_step_{global_step}.json', 'w') as f:
# Serializing json
json_object = json.dumps(json_preds_gradCAM, indent=4)
f.write(json_object)
gc.collect()
torch.cuda.empty_cache()
global_step += 1
def log_data(trainer):
global grad_norm
global mem_torch
global RAM_used
global RAM_available
global global_step
global cam_images
grad_norm = np.array(grad_norm)
grad_norm[grad_norm == 0] = np.nan
grad_norm = np.nanmean(grad_norm, axis=0)
if(cam_images and global_step <= args.epochs):
if "v10" in args.model:
cam_images_C2fCIB = torch.stack(cam_images["C2fCIB [-2]"])
cam_images_PSA = torch.stack(cam_images["PSA"])
cam_images_SPPF = torch.stack(cam_images["SPPF"])
cam_images_Conv = torch.stack(cam_images["Conv [-4]"])
grid_C2fCIB = wandb.Image(make_grid(cam_images_C2fCIB, nrow=int(args.batch/4)).float(), caption="C2fCIB layer")
grid_PSA = wandb.Image(make_grid(cam_images_PSA, nrow=int(args.batch/4)).float(), caption="PSA layer")
grid_SPPF = wandb.Image(make_grid(cam_images_SPPF, nrow=int(args.batch/4)).float(), caption="SPPF layer")
grid_Conv = wandb.Image(make_grid(cam_images_Conv, nrow=int(args.batch/4)).float(), caption="Conv [-2] layer")
wandb.log({"Gradients/L2 Gradients Norm": grad_norm,
"GPU/GPU usage Ultralytics (MB)": mem_torch,
"Memory/Memory used (GB):": RAM_used,
"Memory/Memory available (GB):": RAM_available,
"GradCAM/C2fCIB": grid_C2fCIB,
"GradCAM/SPPF": grid_SPPF,
"GradCAM/PSA": grid_PSA,
"GradCAM/Conv": grid_Conv,
}
)
elif "v8" in args.model:
cam_images_Conv2 = torch.stack(cam_images["Conv [-2]"])
cam_images_Conv4 = torch.stack(cam_images["Conv [-4]"])
cam_images_SPPF = torch.stack(cam_images["SPPF"])
grid_Conv2 = wandb.Image(make_grid(cam_images_Conv2, nrow=int(args.batch/4)).float(), caption="Conv [-2] layer")
grid_Conv4 = wandb.Image(make_grid(cam_images_Conv4, nrow=int(args.batch/4)).float(), caption="Conv [-4] layer")
grid_SPPF = wandb.Image(make_grid(cam_images_SPPF, nrow=int(args.batch/4)).float(), caption="SPPF layer")
wandb.log({"Gradients/L2 Gradients Norm": grad_norm,
"GPU/GPU usage Ultralytics (MB)": mem_torch,
"Memory/Memory used (GB):": RAM_used,
"Memory/Memory available (GB):": RAM_available,
"GradCAM/Conv2": grid_Conv2,
"GradCAM/Conv4": grid_Conv4,
"GradCAM/SPPF": grid_SPPF,
}
)
elif(global_step <= args.epochs):
wandb.log({"Gradients/L2 Gradients Norm": grad_norm,
"GPU/GPU usage Ultralytics (MB)": mem_torch,
"Memory/Memory used (GB):": RAM_used,
"Memory/Memory available (GB):": RAM_available
}
)
cam_images = {}
grad_norm = []
mem_torch = None
RAM_used = None
RAM_available = None
ultralytics_augmentation_args_disabled = {
"hsv_h": 0.0,
"hsv_s": 0.0,
"hsv_v": 0.0,
"degrees": 0.0,
"translate": 0.0,
"scale": 0.0, # Setting scale to 0.0 keeps the original size
"shear": 0.0,
"perspective": 0.0,
"flipud": 0.0,
"fliplr": 0.0,
"mosaic": 0.0,
"mixup": 0.0,
"copy_paste": 0.0,
"augment": False, # Setting to 'none' disables auto augmentation
}
os.makedirs("./experiment/pretrained_weights", exist_ok=True)
pretrained_weights_list = [weights_path.split("/")[-1][:-3]for weights_path in glob("./experiment/pretrained_weights/*.pt")]
if args.model not in pretrained_weights_list:
if "v10" in args.model:
wget.download(f"https://github.com/THU-MIG/yolov10/releases/download/v1.1/{args.model}.pt", out="./experiment/pretrained_weights")
elif "v8" in args.model:
wget.download(f"https://github.com/ultralytics/assets/releases/download/v8.2.0/{args.model}.pt", out="./experiment/pretrained_weights")
global global_step
global_step = 0
gc.collect()
torch.cuda.empty_cache()
wandb.login(key="c5c2f8d387804338825114c4133a31016c9ebf87")
api = wandb.Api()
# Step 1: Initialize a Weights & Biases run
run_name = args.model.split('yolo')[-1]+"_"+args.run
wandb.init(project=f"transfer_learning_{args.dataset}",
dir="./experiment",
name=run_name, # run name
job_type="training",
notes=f"Finetuning of {args.model} model on {args.dataset} dataset",
tags=["object detection", "FaRADAI", "AI4TES", "Finetuning", args.dataset],
resume="allow")
username = wandb.run.entity
project = wandb.run.project
run_id = wandb.run.id
if("From_Scratch" in run_name):
flag_pretrained = False
args.pretrained = flag_pretrained
else:
flag_pretrained = True
args.pretrained = flag_pretrained
# Step 2: Define the YOLO Model
if "v10" in args.model:
from ultralytics import YOLOv10 as YOLO
elif "v8" in args.model:
from ultralytics import YOLO
if(not args.pretrained):
model = YOLO(f"{args.model}.yaml") #Necessary to doesn't initialize pretrained weights
elif args.resume:
model = YOLO(f"./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/weights/last.pt")
else:
model = YOLO(f'./experiment/pretrained_weights/{args.model}.pt')
# Step 3: Add trainer & validator callbacks
model.add_callback("on_train_start", freeze_layer)
model.add_callback("on_train_start", save_val_images_paths)
model.add_callback("on_batch_end", compute_gradients_L2_norm) #After scheduler step
model.add_callback("on_train_epoch_end", get_gpu_usage)
model.add_callback("on_train_epoch_end", compute_grad_CAM)
model.add_callback("on_train_epoch_end", log_data)
if(not args.augment):
args_model.update(ultralytics_augmentation_args_disabled)
if args.resume:
try:
model.train(model=f"./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/weights/last.pt", resume=True)
except:
print("Exception catched, proceeding with validation:")
print(model.info(detailed=True))
pass
else:
model.train(data=f"./datasets/{args.dataset}/dataset.yaml", project=f"./experiment/runs/{args.dataset}/{args.model}", name=f"train_{run_name}", **args_model)
model.data = None
model = None # Necessary to Free RAM
gc.collect()
torch.cuda.empty_cache()
with open(f'./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/args.yaml', 'r') as config_file:
config = yaml.safe_load(config_file)
config['model'] = args.model
if (layers_to_freeze!=0):
config["freeze"] = {"number_of_layers": layers_to_freeze,
"layers": run_name.split("_")[1]}
else:
config["freeze"] = {"number_of_layers": layers_to_freeze,
"layers": "None"}
wandb.init(entity=username,dir="./experiment", project=project, id=run_id, resume="must")
wandb.config.update(config)
model = YOLO(f"./experiment/runs/{args.dataset}/{args.model}/train_{run_name}/weights/best.pt")
metrics = model.val(data=f"../datasets/{args.dataset}/dataset.yaml",
imgsz=args.imgsz,
batch=args.batch,
save_json=True,
save_txt=True,
split='test',
plots=True,
conf=0.5,
iou=0.7,
project=f"./experiment/runs/{args.dataset}/{args.model}",
name=f"test_{run_name}"
)
with open(f"./experiment/runs/{args.dataset}/{args.model}/test_{run_name}/metrics.json", "w") as f:
f.write(json.dumps(metrics.results_dict, indent=4))
wandb.log( {"test/precision(B)": metrics.results_dict["metrics/precision(B)"],
"test/recall(B)": metrics.results_dict["metrics/recall(B)"],
"test/mAP50(B)": metrics.results_dict["metrics/mAP50(B)"],
"test/mAP50-95(B)": metrics.results_dict["metrics/mAP50-95(B)"],
"test/fitness": metrics.results_dict["fitness"]
}
)
# Step 7: Finalize the W&B Run
wandb.finish()
model.data = None
model = None # Necessary to Free RAM
gc.collect()
torch.cuda.empty_cache() |