Upload test.ipynb
Browse files- test.ipynb +134 -0
test.ipynb
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 6,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import tensorflow as tf\n",
|
| 10 |
+
"from PIL import Image\n",
|
| 11 |
+
"import numpy as np\n",
|
| 12 |
+
"import gradio as gr"
|
| 13 |
+
]
|
| 14 |
+
},
|
| 15 |
+
{
|
| 16 |
+
"cell_type": "code",
|
| 17 |
+
"execution_count": 7,
|
| 18 |
+
"metadata": {},
|
| 19 |
+
"outputs": [],
|
| 20 |
+
"source": [
|
| 21 |
+
"model = tf.keras.models.load_model('./Trained_Model.keras')"
|
| 22 |
+
]
|
| 23 |
+
},
|
| 24 |
+
{
|
| 25 |
+
"cell_type": "code",
|
| 26 |
+
"execution_count": 8,
|
| 27 |
+
"metadata": {},
|
| 28 |
+
"outputs": [],
|
| 29 |
+
"source": [
|
| 30 |
+
"classes = ['glioma_tumor', 'meningioma_tumor', 'no_tumor', 'pituitary_tumor'] \n",
|
| 31 |
+
"\n",
|
| 32 |
+
"def preprocess_image(image_path):\n",
|
| 33 |
+
" img = Image.open(image_path).convert('RGB') \n",
|
| 34 |
+
" img_array = img.resize((128, 128)) \n",
|
| 35 |
+
" return np.expand_dims(img_array, axis=0)"
|
| 36 |
+
]
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"cell_type": "code",
|
| 40 |
+
"execution_count": 9,
|
| 41 |
+
"metadata": {},
|
| 42 |
+
"outputs": [],
|
| 43 |
+
"source": [
|
| 44 |
+
"def predict_gradio(image):\n",
|
| 45 |
+
" img_array = preprocess_image(image)\n",
|
| 46 |
+
" predictions = model.predict(img_array)\n",
|
| 47 |
+
" predicted_class = np.argmax(predictions, axis=1)[0]\n",
|
| 48 |
+
" return classes[predicted_class]"
|
| 49 |
+
]
|
| 50 |
+
},
|
| 51 |
+
{
|
| 52 |
+
"cell_type": "code",
|
| 53 |
+
"execution_count": null,
|
| 54 |
+
"metadata": {},
|
| 55 |
+
"outputs": [
|
| 56 |
+
{
|
| 57 |
+
"name": "stdout",
|
| 58 |
+
"output_type": "stream",
|
| 59 |
+
"text": [
|
| 60 |
+
"* Running on local URL: http://127.0.0.1:7864\n",
|
| 61 |
+
"\n",
|
| 62 |
+
"To create a public link, set `share=True` in `launch()`.\n"
|
| 63 |
+
]
|
| 64 |
+
},
|
| 65 |
+
{
|
| 66 |
+
"data": {
|
| 67 |
+
"text/html": [
|
| 68 |
+
"<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
|
| 69 |
+
],
|
| 70 |
+
"text/plain": [
|
| 71 |
+
"<IPython.core.display.HTML object>"
|
| 72 |
+
]
|
| 73 |
+
},
|
| 74 |
+
"metadata": {},
|
| 75 |
+
"output_type": "display_data"
|
| 76 |
+
},
|
| 77 |
+
{
|
| 78 |
+
"data": {
|
| 79 |
+
"text/plain": []
|
| 80 |
+
},
|
| 81 |
+
"execution_count": 21,
|
| 82 |
+
"metadata": {},
|
| 83 |
+
"output_type": "execute_result"
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"name": "stdout",
|
| 87 |
+
"output_type": "stream",
|
| 88 |
+
"text": [
|
| 89 |
+
"\u001b[1m1/1\u001b[0m \u001b[32mββββββββββββββββββββ\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 465ms/step\n"
|
| 90 |
+
]
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"source": [
|
| 94 |
+
"interface = gr.Interface(\n",
|
| 95 |
+
" fn=predict_gradio,\n",
|
| 96 |
+
" inputs=gr.Image(type=\"filepath\"),\n",
|
| 97 |
+
" outputs=\"text\",\n",
|
| 98 |
+
" title=\"Brain Tumor Prediction\",\n",
|
| 99 |
+
" description=\"Upload an MRI image, and the model will predict the class.\"\n",
|
| 100 |
+
")\n",
|
| 101 |
+
"\n",
|
| 102 |
+
"interface.launch(server_port=7864)"
|
| 103 |
+
]
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"cell_type": "code",
|
| 107 |
+
"execution_count": null,
|
| 108 |
+
"metadata": {},
|
| 109 |
+
"outputs": [],
|
| 110 |
+
"source": []
|
| 111 |
+
}
|
| 112 |
+
],
|
| 113 |
+
"metadata": {
|
| 114 |
+
"kernelspec": {
|
| 115 |
+
"display_name": "anway",
|
| 116 |
+
"language": "python",
|
| 117 |
+
"name": "python3"
|
| 118 |
+
},
|
| 119 |
+
"language_info": {
|
| 120 |
+
"codemirror_mode": {
|
| 121 |
+
"name": "ipython",
|
| 122 |
+
"version": 3
|
| 123 |
+
},
|
| 124 |
+
"file_extension": ".py",
|
| 125 |
+
"mimetype": "text/x-python",
|
| 126 |
+
"name": "python",
|
| 127 |
+
"nbconvert_exporter": "python",
|
| 128 |
+
"pygments_lexer": "ipython3",
|
| 129 |
+
"version": "3.10.15"
|
| 130 |
+
}
|
| 131 |
+
},
|
| 132 |
+
"nbformat": 4,
|
| 133 |
+
"nbformat_minor": 2
|
| 134 |
+
}
|