An-way commited on
Commit
9e62d97
Β·
verified Β·
1 Parent(s): ac864c1

Upload test.ipynb

Browse files
Files changed (1) hide show
  1. test.ipynb +134 -0
test.ipynb ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 6,
6
+ "metadata": {},
7
+ "outputs": [],
8
+ "source": [
9
+ "import tensorflow as tf\n",
10
+ "from PIL import Image\n",
11
+ "import numpy as np\n",
12
+ "import gradio as gr"
13
+ ]
14
+ },
15
+ {
16
+ "cell_type": "code",
17
+ "execution_count": 7,
18
+ "metadata": {},
19
+ "outputs": [],
20
+ "source": [
21
+ "model = tf.keras.models.load_model('./Trained_Model.keras')"
22
+ ]
23
+ },
24
+ {
25
+ "cell_type": "code",
26
+ "execution_count": 8,
27
+ "metadata": {},
28
+ "outputs": [],
29
+ "source": [
30
+ "classes = ['glioma_tumor', 'meningioma_tumor', 'no_tumor', 'pituitary_tumor'] \n",
31
+ "\n",
32
+ "def preprocess_image(image_path):\n",
33
+ " img = Image.open(image_path).convert('RGB') \n",
34
+ " img_array = img.resize((128, 128)) \n",
35
+ " return np.expand_dims(img_array, axis=0)"
36
+ ]
37
+ },
38
+ {
39
+ "cell_type": "code",
40
+ "execution_count": 9,
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "def predict_gradio(image):\n",
45
+ " img_array = preprocess_image(image)\n",
46
+ " predictions = model.predict(img_array)\n",
47
+ " predicted_class = np.argmax(predictions, axis=1)[0]\n",
48
+ " return classes[predicted_class]"
49
+ ]
50
+ },
51
+ {
52
+ "cell_type": "code",
53
+ "execution_count": null,
54
+ "metadata": {},
55
+ "outputs": [
56
+ {
57
+ "name": "stdout",
58
+ "output_type": "stream",
59
+ "text": [
60
+ "* Running on local URL: http://127.0.0.1:7864\n",
61
+ "\n",
62
+ "To create a public link, set `share=True` in `launch()`.\n"
63
+ ]
64
+ },
65
+ {
66
+ "data": {
67
+ "text/html": [
68
+ "<div><iframe src=\"http://127.0.0.1:7864/\" width=\"100%\" height=\"500\" allow=\"autoplay; camera; microphone; clipboard-read; clipboard-write;\" frameborder=\"0\" allowfullscreen></iframe></div>"
69
+ ],
70
+ "text/plain": [
71
+ "<IPython.core.display.HTML object>"
72
+ ]
73
+ },
74
+ "metadata": {},
75
+ "output_type": "display_data"
76
+ },
77
+ {
78
+ "data": {
79
+ "text/plain": []
80
+ },
81
+ "execution_count": 21,
82
+ "metadata": {},
83
+ "output_type": "execute_result"
84
+ },
85
+ {
86
+ "name": "stdout",
87
+ "output_type": "stream",
88
+ "text": [
89
+ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 465ms/step\n"
90
+ ]
91
+ }
92
+ ],
93
+ "source": [
94
+ "interface = gr.Interface(\n",
95
+ " fn=predict_gradio,\n",
96
+ " inputs=gr.Image(type=\"filepath\"),\n",
97
+ " outputs=\"text\",\n",
98
+ " title=\"Brain Tumor Prediction\",\n",
99
+ " description=\"Upload an MRI image, and the model will predict the class.\"\n",
100
+ ")\n",
101
+ "\n",
102
+ "interface.launch(server_port=7864)"
103
+ ]
104
+ },
105
+ {
106
+ "cell_type": "code",
107
+ "execution_count": null,
108
+ "metadata": {},
109
+ "outputs": [],
110
+ "source": []
111
+ }
112
+ ],
113
+ "metadata": {
114
+ "kernelspec": {
115
+ "display_name": "anway",
116
+ "language": "python",
117
+ "name": "python3"
118
+ },
119
+ "language_info": {
120
+ "codemirror_mode": {
121
+ "name": "ipython",
122
+ "version": 3
123
+ },
124
+ "file_extension": ".py",
125
+ "mimetype": "text/x-python",
126
+ "name": "python",
127
+ "nbconvert_exporter": "python",
128
+ "pygments_lexer": "ipython3",
129
+ "version": "3.10.15"
130
+ }
131
+ },
132
+ "nbformat": 4,
133
+ "nbformat_minor": 2
134
+ }