File size: 9,936 Bytes
940f479
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: mit
base_model: microsoft/table-transformer-detection
tags:
- generated_from_trainer
model-index:
- name: margin-element-detector-fm-resilient-puddle-10
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# margin-element-detector-fm-resilient-puddle-10

This model is a fine-tuned version of [microsoft/table-transformer-detection](https://huggingface.co/microsoft/table-transformer-detection) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4052
- Loss Ce: 0.0393
- Loss Bbox: 0.0119
- Cardinality Error: 1.0210
- Giou: 84.6670

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 40

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Loss Ce | Loss Bbox | Cardinality Error | Giou    |
|:-------------:|:-----:|:------:|:---------------:|:-------:|:---------:|:-----------------:|:-------:|
| 1.8005        | 0.5   | 1250   | 1.7181          | 0.3317  | 0.0619    | 1.8440            | 46.1650 |
| 1.6365        | 1.0   | 2500   | 1.5861          | 0.3064  | 0.0540    | 2.0670            | 49.5198 |
| 1.4739        | 1.5   | 3750   | 1.4081          | 0.2414  | 0.0487    | 1.2300            | 53.8370 |
| 1.3831        | 2.0   | 5000   | 1.2797          | 0.1926  | 0.0424    | 1.3180            | 56.2369 |
| 1.2362        | 2.5   | 6250   | 1.2517          | 0.1801  | 0.0406    | 1.3390            | 56.5658 |
| 1.2328        | 3.0   | 7500   | 1.2189          | 0.1650  | 0.0387    | 1.2300            | 56.9758 |
| 1.1675        | 3.5   | 8750   | 1.0386          | 0.1388  | 0.0317    | 1.1000            | 62.9430 |
| 1.1411        | 4.0   | 10000  | 1.0574          | 0.1392  | 0.0347    | 1.0590            | 62.7719 |
| 1.0822        | 4.5   | 11250  | 1.0113          | 0.1187  | 0.0337    | 1.0750            | 63.8054 |
| 1.0703        | 5.0   | 12500  | 0.9718          | 0.1181  | 0.0301    | 1.0770            | 64.8419 |
| 1.0278        | 5.5   | 13750  | 0.9538          | 0.1284  | 0.0276    | 1.1210            | 65.6340 |
| 1.044         | 6.0   | 15000  | 0.9157          | 0.1087  | 0.0294    | 1.0430            | 67.0038 |
| 0.9623        | 6.5   | 16250  | 0.9210          | 0.1135  | 0.0291    | 1.0630            | 66.9005 |
| 0.9883        | 7.0   | 17500  | 0.9465          | 0.1058  | 0.0311    | 1.0280            | 65.7425 |
| 0.953         | 7.5   | 18750  | 0.9267          | 0.0954  | 0.0292    | 1.0160            | 65.7261 |
| 0.9673        | 8.0   | 20000  | 0.8716          | 0.0904  | 0.0259    | 1.0230            | 67.4044 |
| 0.8954        | 8.5   | 21250  | 0.8415          | 0.0812  | 0.0256    | 1.0260            | 68.3924 |
| 0.9177        | 9.0   | 22500  | 0.8036          | 0.0819  | 0.0237    | 1.0170            | 69.8347 |
| 0.8572        | 9.5   | 23750  | 0.8165          | 0.0782  | 0.0234    | 1.0130            | 68.9332 |
| 0.8408        | 10.0  | 25000  | 0.8299          | 0.0767  | 0.0235    | 1.0390            | 68.2173 |
| 0.8281        | 10.5  | 26250  | 0.7925          | 0.0824  | 0.0229    | 1.0150            | 70.2080 |
| 0.8488        | 11.0  | 27500  | 0.8325          | 0.0718  | 0.0260    | 0.9950            | 68.4594 |
| 0.7916        | 11.5  | 28750  | 0.8020          | 0.0785  | 0.0231    | 1.0410            | 69.5891 |
| 0.8569        | 12.0  | 30000  | 0.7565          | 0.0681  | 0.0223    | 1.0180            | 71.1528 |
| 0.8023        | 12.5  | 31250  | 0.7649          | 0.0687  | 0.0217    | 1.0190            | 70.6185 |
| 0.776         | 13.0  | 32500  | 0.7613          | 0.0688  | 0.0237    | 0.9970            | 71.3041 |
| 0.7715        | 13.5  | 33750  | 0.7440          | 0.0689  | 0.0215    | 0.9850            | 71.6202 |
| 0.7823        | 14.0  | 35000  | 0.7766          | 0.0717  | 0.0220    | 1.0280            | 70.2445 |
| 0.7579        | 14.5  | 36250  | 0.7339          | 0.0613  | 0.0205    | 1.0510            | 71.4997 |
| 0.7693        | 15.0  | 37500  | 0.7738          | 0.0661  | 0.0225    | 1.0220            | 70.2403 |
| 0.713         | 15.5  | 38750  | 0.6801          | 0.0614  | 0.0190    | 1.0430            | 73.8128 |
| 0.6734        | 16.0  | 40000  | 0.7041          | 0.0623  | 0.0213    | 1.0100            | 73.2345 |
| 0.7289        | 16.5  | 41250  | 0.6959          | 0.0607  | 0.0209    | 1.0060            | 73.4663 |
| 0.7205        | 17.0  | 42500  | 0.7272          | 0.0704  | 0.0215    | 1.0110            | 72.5326 |
| 0.6855        | 17.5  | 43750  | 0.6586          | 0.0624  | 0.0195    | 1.0330            | 75.0753 |
| 0.6523        | 18.0  | 45000  | 0.6495          | 0.0557  | 0.0192    | 1.0380            | 75.1177 |
| 0.6519        | 18.5  | 46250  | 0.6763          | 0.0589  | 0.0198    | 1.0060            | 74.0859 |
| 0.6568        | 19.0  | 47500  | 0.6548          | 0.0758  | 0.0181    | 1.0200            | 75.5647 |
| 0.6254        | 19.5  | 48750  | 0.6494          | 0.0584  | 0.0193    | 1.0320            | 75.2703 |
| 0.6487        | 20.0  | 50000  | 0.6183          | 0.0624  | 0.0183    | 1.0570            | 76.7859 |
| 0.6287        | 20.5  | 51250  | 0.6432          | 0.0565  | 0.0193    | 1.0010            | 75.4949 |
| 0.6163        | 21.0  | 52500  | 0.6062          | 0.0485  | 0.0162    | 1.0110            | 76.1785 |
| 0.6029        | 21.5  | 53750  | 0.6158          | 0.0504  | 0.0174    | 1.0200            | 76.0916 |
| 0.622         | 22.0  | 55000  | 0.6186          | 0.0546  | 0.0180    | 0.9950            | 76.3034 |
| 0.597         | 22.5  | 56250  | 0.6172          | 0.0513  | 0.0180    | 1.0120            | 76.2164 |
| 0.5684        | 23.0  | 57500  | 0.5967          | 0.0527  | 0.0175    | 1.0250            | 77.1797 |
| 0.5899        | 23.5  | 58750  | 0.6035          | 0.0538  | 0.0178    | 1.0250            | 76.9589 |
| 0.5592        | 24.0  | 60000  | 0.6320          | 0.0548  | 0.0179    | 1.0180            | 75.6223 |
| 0.5994        | 24.5  | 61250  | 0.5444          | 0.0529  | 0.0159    | 1.0210            | 79.3936 |
| 0.5547        | 25.0  | 62500  | 0.5969          | 0.0527  | 0.0174    | 1.0320            | 77.1495 |
| 0.5135        | 25.5  | 63750  | 0.5651          | 0.0524  | 0.0163    | 1.0310            | 78.4524 |
| 0.5504        | 26.0  | 65000  | 0.5823          | 0.0451  | 0.0172    | 1.0150            | 77.4492 |
| 0.5342        | 26.5  | 66250  | 0.5905          | 0.0489  | 0.0169    | 1.0090            | 77.1484 |
| 0.5166        | 27.0  | 67500  | 0.5651          | 0.0488  | 0.0157    | 1.0010            | 78.1068 |
| 0.5311        | 27.5  | 68750  | 0.5585          | 0.0532  | 0.0162    | 1.0280            | 78.7836 |
| 0.5178        | 28.0  | 70000  | 0.5315          | 0.0451  | 0.0152    | 1.0190            | 79.4811 |
| 0.4967        | 28.5  | 71250  | 0.5399          | 0.0518  | 0.0151    | 1.0210            | 79.3648 |
| 0.5137        | 29.0  | 72500  | 0.5199          | 0.0461  | 0.0143    | 1.0310            | 79.8946 |
| 0.4903        | 29.5  | 73750  | 0.4885          | 0.0470  | 0.0144    | 1.0100            | 81.5240 |
| 0.4739        | 30.0  | 75000  | 0.4985          | 0.0447  | 0.0134    | 1.0150            | 80.6692 |
| 0.4455        | 30.5  | 76250  | 0.4999          | 0.0461  | 0.0140    | 1.0290            | 80.8051 |
| 0.4476        | 31.0  | 77500  | 0.4961          | 0.0466  | 0.0140    | 1.0090            | 81.0313 |
| 0.4581        | 31.5  | 78750  | 0.4980          | 0.0406  | 0.0141    | 1.0310            | 80.6620 |
| 0.4413        | 32.0  | 80000  | 0.5194          | 0.0431  | 0.0144    | 1.0300            | 79.7935 |
| 0.4332        | 32.5  | 81250  | 0.4861          | 0.0423  | 0.0139    | 1.0270            | 81.2911 |
| 0.444         | 33.0  | 82500  | 0.4515          | 0.0408  | 0.0127    | 1.0290            | 82.6487 |
| 0.4323        | 33.5  | 83750  | 0.4629          | 0.0434  | 0.0134    | 1.0300            | 82.3851 |
| 0.4299        | 34.0  | 85000  | 0.4602          | 0.0403  | 0.0129    | 1.0220            | 82.2341 |
| 0.403         | 34.5  | 86250  | 0.4693          | 0.0440  | 0.0133    | 1.0350            | 82.0647 |
| 0.4001        | 35.0  | 87500  | 0.4582          | 0.0397  | 0.0132    | 1.0210            | 82.3646 |
| 0.3987        | 35.5  | 88750  | 0.4354          | 0.0405  | 0.0125    | 1.0220            | 83.3753 |
| 0.3814        | 36.0  | 90000  | 0.4327          | 0.0397  | 0.0129    | 1.0290            | 83.5913 |
| 0.3694        | 36.5  | 91250  | 0.4285          | 0.0395  | 0.0128    | 1.0370            | 83.7543 |
| 0.3791        | 37.0  | 92500  | 0.4262          | 0.0382  | 0.0123    | 1.0200            | 83.6733 |
| 0.3646        | 37.5  | 93750  | 0.4133          | 0.0406  | 0.0123    | 1.0460            | 84.4284 |
| 0.3756        | 38.0  | 95000  | 0.4211          | 0.0397  | 0.0121    | 1.0080            | 83.9594 |
| 0.3566        | 38.5  | 96250  | 0.4125          | 0.0382  | 0.0120    | 1.0190            | 84.2887 |
| 0.3601        | 39.0  | 97500  | 0.4082          | 0.0395  | 0.0119    | 1.0320            | 84.5329 |
| 0.3483        | 39.5  | 98750  | 0.4064          | 0.0395  | 0.0119    | 1.0230            | 84.6185 |
| 0.3485        | 40.0  | 100000 | 0.4052          | 0.0393  | 0.0119    | 1.0210            | 84.6670 |


### Framework versions

- Transformers 4.33.2
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.13.3