--- license: mit --- # ESM-2 for Post Translational Modification ## Metrics ```python Train metrics: {'eval_loss': 0.024510689079761505, 'eval_accuracy': 0.9908227849618837, 'eval_precision': 0.22390420883031378, 'eval_recall': 0.9793229461354229, 'eval_f1': 0.3644773616334614, 'eval_auc': 0.9850883581685357, 'eval_mcc': 0.4660172779827273} Test metrics: {'eval_loss': 0.1606895923614502, 'eval_accuracy': 0.9363938912290479, 'eval_precision': 0.04428881619840198, 'eval_recall': 0.7708102070506146, 'eval_f1': 0.08376472210171558, 'eval_auc': 0.8539155251667717, 'eval_mcc': 0.17519724897930178} ``` ## Using the Model To use this model, firts run: ``` !pip install transformers -q !pip install peft -q ``` Then run the following on your protein sequence to predict post translational modification sites: ```python from transformers import AutoModelForTokenClassification, AutoTokenizer from peft import PeftModel import torch # Path to the saved LoRA model model_path = "AmelieSchreiber/esm2_t6_8M_ptm_lora_500K" # ESM2 base model base_model_path = "facebook/esm2_t6_8M_UR50D" # Load the model base_model = AutoModelForTokenClassification.from_pretrained(base_model_path) loaded_model = PeftModel.from_pretrained(base_model, model_path) # Ensure the model is in evaluation mode loaded_model.eval() # Load the tokenizer loaded_tokenizer = AutoTokenizer.from_pretrained(base_model_path) # Protein sequence for inference protein_sequence = "MAVPETRPNHTIYINNLNEKIKKDELKKSLHAIFSRFGQILDILVSRSLKMRGQAFVIFKEVSSATNALRSMQGFPFYDKPMRIQYAKTDSDIIAKMKGT" # Replace with your actual sequence # Tokenize the sequence inputs = loaded_tokenizer(protein_sequence, return_tensors="pt", truncation=True, max_length=1024, padding='max_length') # Run the model with torch.no_grad(): logits = loaded_model(**inputs).logits # Get predictions tokens = loaded_tokenizer.convert_ids_to_tokens(inputs["input_ids"][0]) # Convert input ids back to tokens predictions = torch.argmax(logits, dim=2) # Define labels id2label = { 0: "No ptm site", 1: "ptm site" } # Print the predicted labels for each token for token, prediction in zip(tokens, predictions[0].numpy()): if token not in ['', '', '']: print((token, id2label[prediction])) ```