AmazonBBQ commited on
Commit
f0db0f4
·
1 Parent(s): fcd50c6

Upload DQN LunarLander-v2 trained agent

Browse files
DQN-LUNARLANDER-V2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8ad2a1b63e51c9ccc54737090d165ce1f493f88cf99b1ebe7cd06921edf10812
3
+ size 108829
DQN-LUNARLANDER-V2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.7.0
DQN-LUNARLANDER-V2/data ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=",
5
+ "__module__": "stable_baselines3.dqn.policies",
6
+ "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function DQNPolicy.__init__ at 0x000001C455B78040>",
8
+ "_build": "<function DQNPolicy._build at 0x000001C455B780D0>",
9
+ "make_q_net": "<function DQNPolicy.make_q_net at 0x000001C455B78160>",
10
+ "forward": "<function DQNPolicy.forward at 0x000001C455B781F0>",
11
+ "_predict": "<function DQNPolicy._predict at 0x000001C455B78280>",
12
+ "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x000001C455B78310>",
13
+ "set_training_mode": "<function DQNPolicy.set_training_mode at 0x000001C455B783A0>",
14
+ "__abstractmethods__": "frozenset()",
15
+ "_abc_impl": "<_abc._abc_data object at 0x000001C455B77840>"
16
+ },
17
+ "verbose": 1,
18
+ "policy_kwargs": {},
19
+ "observation_space": {
20
+ ":type:": "<class 'gym.spaces.box.Box'>",
21
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
22
+ "dtype": "float32",
23
+ "_shape": [
24
+ 8
25
+ ],
26
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
27
+ "high": "[inf inf inf inf inf inf inf inf]",
28
+ "bounded_below": "[False False False False False False False False]",
29
+ "bounded_above": "[False False False False False False False False]",
30
+ "_np_random": null
31
+ },
32
+ "action_space": {
33
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
34
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAiXa1hBJtBHgFFIfKccw9ElRHmjE9aTkNSSD8ErchmFVgKE1Atia+VZLBBFzf6onIdY/TkIWmnjBv+lE/U9XBsHq4yYs6V6Kvn3MDzDTl1hVVpavrAq3dxNMSKn9AmMgI4SA3zK6CWsr+aagUqx3bZYNgVDDFsqF/ZLaUX7OI/9+yug7JJhOS6B8fc2T87Uqt6p186QONUtPqkijKbwrQumy8vW8yUFs1oB08dFl/oNgy56wSW31CtiICQrIYoGk1i81GWgwahFvpaobTVN0FOwf9hHCLuqHXLnooe8MQh4FioB1Rxhs5AQgx3vwzbWD/+OKinBQtEZlTDJS09YqlfhbBfAuwhasgK7ppesLs3JbWPbgFUJ7ptPBiRIYVxPbzrGK6yJbM1fRxCm+BUl+eoxQojFWFrxuyqutQFez8I0PJeIyWxfk3aXxHQdXwK7+IH+C/o1MUBcjSpn21TvoSl6ZTJ0ANLDRwSEx8+v9QoUCPdnmZquzu7QnIeOk0p8AHknE3LmThAVi2/Oum8zQObZRg1VLNRbaJNNFxNMb+kgvJ6L9QMTsskb+CxVQCGhwKsO305XAbDZBnEOUFf52fAb/fkgCXvX7Yjg5mvuuY8J0MJdtwRuy++P0h1tJbQa1Tqa6ePkSKL+4wh7Q0Yn6HUqGIrPfv7WidU6bYgGxubLJf/mds6bWQUXgqD5agCV9ir2RXHkKOm35iKOJ/qZ1P51MD1vLx8YI13NEG6iymeLc8NcjiLBbA6E+fnbdQv6KId8FuYjZR9wHeyN0c2DW+X00g0v4ccqvqYhcd2+mFFB38xiCBX0jfbubiRGBcPnZimld2+yHsu+lieez+sE9ALAXk252pL/H1sIzNwJUcg3jsPwYxQk1oO7EcCdmNpLhBO0cw4S5c7R50eHcO+LkClgHW2bolUvvzCNdJW+2eXl07xpF5Q34oGYVBc5Mvbm34kaFgi+o0g2twGnEVRpvx9pZST17VifDUd4miIb4DxrYLbV8LnxWtrQsF4Ddet7HME535OzT5AWwUbWPw3P0Eh3Dnd/HheGKHPrq/tjavuFDW/JZCM2jdmB4tn4so4huDobdpYgT0f18VaLSUaTRD70WKaOE6E5XeD2cztCdhBtPbZUpmJjFkHhG0D8NxKIpdAui/73UFd6tkdaBC0r+g3SEAS6Y1zjs7s6HgSlLLDYjl+UAMHuR2sV5D/AIqdlSx8zvie2Mpbor3H8Sx7nUUkJ/7O6XNm8LqcEMzA1aSNTSFW82UZR3OgM0XytGpcnEdexoPPfDhhTVFrOxsW5qjGD/omvG9Z/zdc6J9WagiS7hRcUfA6QkDm7il8lzRC4EB/T0/SOjEc029kY/nRpretUQ59ascWdk+TXaRMUWcrb6P+b76uFyxOPk1NbnEe62wfaekqb5cjwW4Q/3Bu7cGaWZHxaQ+51FVln7McicxPce+A7kr/rtZoNRt5bPU6sdn1j1UPFxGgbNK7HOvp151mZlw+XGIPTW5QuM2rSOSv3YkGkyloZuKm+LL2P1bJVH4wEJTpWe+5BFItfoPWtogykYUp1amYNBVqU0k1DwIuXiw3+/7DU9dexqfh3tSINdu2HVcoFE1gJFeCmjs/B7cnVzaLeWIGaEXmB7mG/45k8hNNYXNHp6xKnY6Gb7UV3KuHqH32jxnOjK3YPMG+9N9Ies0N8iMxFtJhU0F3w3qyK1tO5O3xjLGxIBEuKRytUkhJPoTY8WuoQ9ZTY4OZU9iq8hxUI9YKkVIZZPXNpNBsi4IIVnRBcJ/RU1gi37LNbHr5cf9tZH+bcoXuH4HqGnjOM4ldi4e2hMhkPZ+kBPG1xfkU+rF0gb5z6WOHBJ6u7Vy5fnfA65INMEo34XUzBtyWD6zYD62KyA2eBu0/MhU37EPqYMBK6yBdggUNLzakiuQEjZf6I9hEMcdoquOHbLdcdgxWrRO50ttSe8Kjk9iaW2M4lZBFPNMbnnk1eztC9wzMEW+REUiyxTtHjYlt580w+OBbXB9q0e82QBgDWRkRmFP4HrYFI6e4wW22jXf67yzP+EX2XNj8gopsQrdieI7fAZ9Q6AMKwaKnKYrIm9/yO9kE+l9O2QYxcGtbEsXBrV1grreP1OZ2raSH0Ndrr9IlEsXQcqwcPIQcnk5yq+UmMlX3eiq6YfGJUgkKq+n2VBVd/Y6j1wgKU5wNT3OHDP2QeenSv8Ybl06N5GnyuQF1Qm9Bhy9bOIwdo84mgn6Z3zf5zTUAsW8DPezJPT2IEmFHkmeFEAdbRekfvRMlpANXQsXBOHWeMfXmqglmtqZUpzi+bdl3N2S5lyCw4ieSNOqbQQP3jnjlwRuxbAUk7h1zU2VryUxcyfjTR9sRQTXc9zVm/0GupKfsqWtDs8IDVVN7S1uggFw8l6yTtErktrDZMiVzSPV2nfyea3zFmMyDMKKAI+gByJ20/vEWn8CLXA0KqUrNKi0yTY/ST1zptIPo2NSDDRlv/pKDQKcrXbnl0cJm9TX645hDTCP+Az1SqTYmMSzaZ5+YZEq4ONMojnR+zjMXImkG2xqBOaBLPrcsaMi3VdQS4IXk28WoIuSyZoxFMdnCO6L1Y9aq6VHimcj59zZDl6r6yrUzYxBi5SVGSS/n8vsgo2cv2pufbHZAQSCAMSeRHv0ZTP8qRPZT/6KDxlgu23Wmig7ZkH/Q0rEOE2qYjN37ZMF0iNDmJHCgaq+Lh86euDpbkH4Qda6Dp06RMzN/FixFfT6lbIvd3UElTlIUnj1y4rsnuCM7W0UXc/1s4a5sEwBQP3DIcisRmzvMKjLqJMwBbLFPRajl53ICldGfoa2jHIrMnegb6IdAbD8x/iFfcyXHuinSSm6On5lrbuY7Yjl0yt+fJhipU/mif5oXrHNc+AyFKQyBYr3zyrncQFowQcGdx79VN+TYbkF1TQV9IcSHO6laNXbHKCsQxoKS2qTOSLQwML/2yzEVukRW4RKpo2ixZiKwmnJHkGGorITVDuwDrsWlhdYliIdRS1E2ErwEEa4jX/oMUNHMR/LQ5ICt4SCHXgygUUu/nhkAJ4tKB2sVGfN37rpkc1PFGJNsYAXGxdKdNRejILSBTvlk9V1T77onBRWfNrycsDUPvmgu0ScNkPT//jhz+FXb/9NXrr4hmN/nNad4iX3KAXZdxlTfsP1T4nSI0fweIRTYhP4/ElybJdXm7y8LMuXmyXG5vJkmXSMdnUSGYMMd5fMcolDyc0xKK4VM92GWHy3zb72Ho0TSlXwWfdpvNRnSrOH/PNeKs3Qea69T7D/W8SQnnM0STA1xqVH77fYnBYzi4xfjCFiJtxlxA6YG2kZsYzklGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLWXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
35
+ "n": 4,
36
+ "_shape": [],
37
+ "dtype": "int64",
38
+ "_np_random": "RandomState(MT19937)"
39
+ },
40
+ "n_envs": 1,
41
+ "num_timesteps": 200000,
42
+ "_total_timesteps": 200000,
43
+ "_num_timesteps_at_start": 0,
44
+ "seed": null,
45
+ "action_noise": null,
46
+ "start_time": 1677686639737637000,
47
+ "learning_rate": 0.001,
48
+ "tensorboard_log": null,
49
+ "lr_schedule": {
50
+ ":type:": "<class 'function'>",
51
+ ":serialized:": "gAWVewIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEtDOlxVc2Vyc1xDaGVuXGFuYWNvbmRhM1xsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
52
+ },
53
+ "_last_obs": null,
54
+ "_last_episode_starts": {
55
+ ":type:": "<class 'numpy.ndarray'>",
56
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
57
+ },
58
+ "_last_original_obs": {
59
+ ":type:": "<class 'numpy.ndarray'>",
60
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACazrL2o7Mo/RO6UuuL3CD3UosK8lrsLPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
61
+ },
62
+ "_episode_num": 738,
63
+ "use_sde": false,
64
+ "sde_sample_freq": -1,
65
+ "_current_progress_remaining": 0.0,
66
+ "ep_info_buffer": {
67
+ ":type:": "<class 'collections.deque'>",
68
+ ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5ggZyLMTVMCUhpRSlIwBbJRN6AOMAXSUR0BksvcL0BfbdX2UKGgGaAloD0MIOUTcnEpuSsCUhpRSlGgVTeYCaBZHQGTseoUBXCF1fZQoaAZoCWgPQwj/IJIhx2hiwJSGlFKUaBVN6ANoFkdAZUqEjgQ6IXV9lChoBmgJaA9DCCcyc4FLpWDAlIaUUpRoFU3oA2gWR0Bllg+bExZddX2UKGgGaAloD0MIVfmekQhwX0CUhpRSlGgVTWsDaBZHQGXYIUzsQd11fZQoaAZoCWgPQwgFiIIZU+VYwJSGlFKUaBVN6ANoFkdAZiVhDPWxyHV9lChoBmgJaA9DCF4vTRFgjmTAlIaUUpRoFU0uAWgWR0BmOIhW5paidX2UKGgGaAloD0MIOSuiJvqSUsCUhpRSlGgVTegDaBZHQGZ+RD1Gsmx1fZQoaAZoCWgPQwjRrdf0IEVlwJSGlFKUaBVN6ANoFkdAZteL4vexfXV9lChoBmgJaA9DCGNH41C/YFHAlIaUUpRoFU24AWgWR0Bm85SiudPMdX2UKGgGaAloD0MIBOj3/ZtyY8CUhpRSlGgVTegDaBZHQGdLqkuYhMd1fZQoaAZoCWgPQwj9+bZgqThZwJSGlFKUaBVN6ANoFkdAZ6ZHHWBjF3V9lChoBmgJaA9DCKFHjJ5bcDzAlIaUUpRoFU3oA2gWR0Bn9wbhm5DrdX2UKGgGaAloD0MIDw2LUdcqHcCUhpRSlGgVTXQBaBZHQGgPZtelbeN1fZQoaAZoCWgPQwh2xYzwdj1jwJSGlFKUaBVN6ANoFkdAaFydBjWkJ3V9lChoBmgJaA9DCFwFMdA1RWZAlIaUUpRoFU3mAmgWR0BokOac7QsxdX2UKGgGaAloD0MIRpbMsTylYMCUhpRSlGgVTegDaBZHQGjYmm1pj+d1fZQoaAZoCWgPQwj1vYbguGRlwJSGlFKUaBVN6ANoFkdAaUDsJpnHvXV9lChoBmgJaA9DCJRQ+kJIV2XAlIaUUpRoFU3oA2gWR0BpkdnqVyFPdX2UKGgGaAloD0MIFlCopw9EZsCUhpRSlGgVTegDaBZHQGnkS6cy31B1fZQoaAZoCWgPQwgPYJFfP+tfwJSGlFKUaBVN6ANoFkdAajG6EJ0GNnV9lChoBmgJaA9DCGZLVkW4OWLAlIaUUpRoFU3oA2gWR0Bqf29DhLoPdX2UKGgGaAloD0MI4A7UKY/oRMCUhpRSlGgVTYYCaBZHQGqzqxs2vSt1fZQoaAZoCWgPQwhkBFQ4gllhwJSGlFKUaBVN6ANoFkdAaw43Td+G5HV9lChoBmgJaA9DCMsPXOUJOV7AlIaUUpRoFU3oA2gWR0BrY6k0rK/3dX2UKGgGaAloD0MISBgGLLnTX8CUhpRSlGgVTegDaBZHQGuuwNsnAqN1fZQoaAZoCWgPQwhPzeUGQ2pbwJSGlFKUaBVN6ANoFkdAa/sPVd5Y5nV9lChoBmgJaA9DCBrDnKDNf2LAlIaUUpRoFU3oA2gWR0BsR4AMlTm5dX2UKGgGaAloD0MI3CvzVl1xWcCUhpRSlGgVTegDaBZHQGyKixNZeRh1fZQoaAZoCWgPQwg5YFeTpwVkwJSGlFKUaBVN6ANoFkdAbNsdz4k/r3V9lChoBmgJaA9DCPzG155ZxV/AlIaUUpRoFU3oA2gWR0BtKYN/e+EidX2UKGgGaAloD0MISSwpd5/yWcCUhpRSlGgVTegDaBZHQG2I75M10kp1fZQoaAZoCWgPQwjIt3cNejpkwJSGlFKUaBVN6ANoFkdAbdiLJjlPrXV9lChoBmgJaA9DCN9qnbicp2fAlIaUUpRoFU3oA2gWR0BuLa/yoXKsdX2UKGgGaAloD0MIY5tUNFaFYcCUhpRSlGgVTegDaBZHQG5x8Wj45951fZQoaAZoCWgPQwgOoUrNHqNdwJSGlFKUaBVN6ANoFkdAbr6t1ZDArXV9lChoBmgJaA9DCMhhMH8FPWDAlIaUUpRoFU3oA2gWR0BvC6YRdyDJdX2UKGgGaAloD0MIDeTZ5VvdYcCUhpRSlGgVTegDaBZHQG9k96Tnq3V1fZQoaAZoCWgPQwhvgQTFDw9hwJSGlFKUaBVN6ANoFkdAb7zmEGqxT3V9lChoBmgJaA9DCMeEmEsqQGPAlIaUUpRoFU3oA2gWR0BwBWHuZ1FIdX2UKGgGaAloD0MICcOAJdfsYcCUhpRSlGgVTegDaBZHQHAtlR+BpYd1fZQoaAZoCWgPQwi1UgjkEpdewJSGlFKUaBVN6ANoFkdAcFLCPIXCTHV9lChoBmgJaA9DCOdTxyqlyWPAlIaUUpRoFU3oA2gWR0Bwf+1stTUBdX2UKGgGaAloD0MI2jhiLT49YsCUhpRSlGgVTegDaBZHQHClZd0JWvN1fZQoaAZoCWgPQwjKMVnc/ytmwJSGlFKUaBVN6ANoFkdAcM9W7voeP3V9lChoBmgJaA9DCCbkg57NH1vAlIaUUpRoFU3oA2gWR0Bw8D+hoM8YdX2UKGgGaAloD0MIB0Dc1SugZMCUhpRSlGgVTegDaBZHQHEXVFpfx+d1fZQoaAZoCWgPQwjkafmBq8RcwJSGlFKUaBVN6ANoFkdAcT7CDmKZUnV9lChoBmgJaA9DCPFjzF1LjGTAlIaUUpRoFU3oA2gWR0BxZtnAZbY9dX2UKGgGaAloD0MIMgIqHEFLXMCUhpRSlGgVTegDaBZHQHGNAt8NQTF1fZQoaAZoCWgPQwjZsnxdBrVjwJSGlFKUaBVN6ANoFkdAcboTtb9qDnV9lChoBmgJaA9DCDWzlgLShljAlIaUUpRoFU3oA2gWR0Bx4QAaNuLrdX2UKGgGaAloD0MIe2gfK3i3ZMCUhpRSlGgVTegDaBZHQHIHZZ8rqdJ1fZQoaAZoCWgPQwgsgZTYtaliwJSGlFKUaBVN6ANoFkdAcilQY1pCbHV9lChoBmgJaA9DCLvSMlJvgWTAlIaUUpRoFU3oA2gWR0ByTbl3hXKbdX2UKGgGaAloD0MId9fZkH85UsCUhpRSlGgVTegDaBZHQHJzpY1YQrd1fZQoaAZoCWgPQwiYbhKDwO9gwJSGlFKUaBVN6ANoFkdAcp3fCAMDwHV9lChoBmgJaA9DCDYhrTHov1rAlIaUUpRoFU3oA2gWR0Byw2qtHQQddX2UKGgGaAloD0MIK91dZ0PyX8CUhpRSlGgVTegDaBZHQHLk8BMi8nN1fZQoaAZoCWgPQwjjx5i7lm9kwJSGlFKUaBVN6ANoFkdAcwhclPacqnV9lChoBmgJaA9DCAAbECEuU2HAlIaUUpRoFU3oA2gWR0BzKrpD/lySdX2UKGgGaAloD0MI8Q2Fz1ZIZsCUhpRSlGgVTegDaBZHQHNS4cinpB51fZQoaAZoCWgPQwguVP61vEJgwJSGlFKUaBVN6ANoFkdAc3sUKiO/+XV9lChoBmgJaA9DCHYWvVMB32DAlIaUUpRoFU3oA2gWR0BzoTRrrPdEdX2UKGgGaAloD0MIMUPjiaBcZMCUhpRSlGgVTegDaBZHQHPLVs54nnd1fZQoaAZoCWgPQwiERrBxfeJkwJSGlFKUaBVN6ANoFkdAc+6jnmq5snV9lChoBmgJaA9DCGU4ns8A72LAlIaUUpRoFU3oA2gWR0B0EkVtXPqtdX2UKGgGaAloD0MIdcx5xr4TY8CUhpRSlGgVTegDaBZHQHQ2FX7tRel1fZQoaAZoCWgPQwit9xvtuIZiwJSGlFKUaBVN6ANoFkdAdFyvgFX7tXV9lChoBmgJaA9DCDD0iNFzYGrAlIaUUpRoFU3oA2gWR0B0iFHavicYdX2UKGgGaAloD0MIOs0C7Q5HaMCUhpRSlGgVTegDaBZHQHSxFzuF6Ax1fZQoaAZoCWgPQwjT3XU2ZDdhwJSGlFKUaBVN6ANoFkdAdNIJmNBF/nV9lChoBmgJaA9DCJNuS+SC917AlIaUUpRoFU3oA2gWR0B09QA93bEhdX2UKGgGaAloD0MIRfEqa5vNa8CUhpRSlGgVTegDaBZHQHUdYK6WgOB1fZQoaAZoCWgPQwj0bFZ9LkxhwJSGlFKUaBVN6ANoFkdAdT97qIJqqXV9lChoBmgJaA9DCBx8YTLVtGjAlIaUUpRoFU0EAWgWR0B1RwAq/dqMdX2UKGgGaAloD0MIHm/yW/T7YsCUhpRSlGgVTegDaBZHQHVzSsOoYN11fZQoaAZoCWgPQwiIR+LlabVjwJSGlFKUaBVNWAFoFkdAdX26MR6F/XV9lChoBmgJaA9DCBzr4jYaYWTAlIaUUpRoFU3oA2gWR0B1pC8PFvQ4dX2UKGgGaAloD0MIcY+lD93NY8CUhpRSlGgVTTECaBZHQHW2r6P8yet1fZQoaAZoCWgPQwinIhXGFnxfwJSGlFKUaBVN6ANoFkdAddnnDBMzuXV9lChoBmgJaA9DCN3T1R0LjmTAlIaUUpRoFU3oA2gWR0B1+cxQBPsSdX2UKGgGaAloD0MIoUliSbmtYMCUhpRSlGgVTegDaBZHQHYat74SHuZ1fZQoaAZoCWgPQwjX3NH/cpxSwJSGlFKUaBVLzmgWR0B2IJLQHAymdX2UKGgGaAloD0MIhC12+yyAbMCUhpRSlGgVTSYDaBZHQHY7LCJoCdV1fZQoaAZoCWgPQwhzol2FlDhrwJSGlFKUaBVNAQNoFkdAdlMqt5le4XV9lChoBmgJaA9DCKdAZmfRCGTAlIaUUpRoFU3oA2gWR0B2eX5uZThpdX2UKGgGaAloD0MIZ341B4hrYsCUhpRSlGgVTegDaBZHQHaefh2nsLR1fZQoaAZoCWgPQwhmLQWkff5kwJSGlFKUaBVLzWgWR0B2pK16Vt4zdX2UKGgGaAloD0MIzy9K0N/1Y8CUhpRSlGgVTegDaBZHQHbKM8cMmWt1fZQoaAZoCWgPQwjy64fYYCxlwJSGlFKUaBVL12gWR0B20KtNi6QOdX2UKGgGaAloD0MIAp60cFnfY8CUhpRSlGgVS/xoFkdAdtgduHerMnV9lChoBmgJaA9DCHgmNEkswGTAlIaUUpRoFU3oA2gWR0B2/0lLOAy3dX2UKGgGaAloD0MIgsr49xlPYsCUhpRSlGgVTegDaBZHQHcqTQiRnvl1fZQoaAZoCWgPQwhnYU87fBlnwJSGlFKUaBVN6ANoFkdAd1eujRD1G3V9lChoBmgJaA9DCHnNqzqrpmXAlIaUUpRoFU3oA2gWR0B3fdgy/KyOdX2UKGgGaAloD0MIX+0ozlEvWcCUhpRSlGgVTegDaBZHQHejvWpZOi51fZQoaAZoCWgPQwih9IWQ82VewJSGlFKUaBVN6ANoFkdAd8x5Ec81XXV9lChoBmgJaA9DCOrqjsW2qGXAlIaUUpRoFU0BAWgWR0B31FC5VfeDdX2UKGgGaAloD0MIcCL6tXVzZMCUhpRSlGgVTegDaBZHQHf3MZccENh1ZS4="
69
+ },
70
+ "ep_success_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
73
+ },
74
+ "_n_updates": 37500,
75
+ "buffer_size": 1000000,
76
+ "batch_size": 32,
77
+ "learning_starts": 50000,
78
+ "tau": 1.0,
79
+ "gamma": 0.99,
80
+ "gradient_steps": 1,
81
+ "optimize_memory_usage": false,
82
+ "replay_buffer_class": {
83
+ ":type:": "<class 'abc.ABCMeta'>",
84
+ ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==",
85
+ "__module__": "stable_baselines3.common.buffers",
86
+ "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ",
87
+ "__init__": "<function ReplayBuffer.__init__ at 0x000001C455B3B790>",
88
+ "add": "<function ReplayBuffer.add at 0x000001C455B3B820>",
89
+ "sample": "<function ReplayBuffer.sample at 0x000001C455B3B8B0>",
90
+ "_get_samples": "<function ReplayBuffer._get_samples at 0x000001C455B3B940>",
91
+ "__abstractmethods__": "frozenset()",
92
+ "_abc_impl": "<_abc._abc_data object at 0x000001C455B3C940>"
93
+ },
94
+ "replay_buffer_kwargs": {},
95
+ "train_freq": {
96
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
97
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
98
+ },
99
+ "actor": null,
100
+ "use_sde_at_warmup": false,
101
+ "exploration_initial_eps": 1.0,
102
+ "exploration_final_eps": 0.05,
103
+ "exploration_fraction": 0.1,
104
+ "target_update_interval": 10000,
105
+ "_n_calls": 200000,
106
+ "max_grad_norm": 10,
107
+ "exploration_rate": 0.05,
108
+ "exploration_schedule": {
109
+ ":type:": "<class 'function'>",
110
+ ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwRLE0MsZAF8ABgAiAFrBHIQiABTAIgCZAF8ABgAiACIAhgAFACIARsAFwBTAGQAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMS0M6XFVzZXJzXENoZW5cYW5hY29uZGEzXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS3BDBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
111
+ },
112
+ "batch_norm_stats": [],
113
+ "batch_norm_stats_target": []
114
+ }
DQN-LUNARLANDER-V2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1cbe418691f8d86d4425191319a9ea19ea611c0bd7798341d9b2c7c3c00c7750
3
+ size 44975
DQN-LUNARLANDER-V2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:966c53da307947814e87a17206d40c13c19c379fca6a8be4cd335ca88ef5e8ea
3
+ size 44033
DQN-LUNARLANDER-V2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
DQN-LUNARLANDER-V2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.22621-SP0 10.0.22621
2
+ - Python: 3.9.13
3
+ - Stable-Baselines3: 1.7.0
4
+ - PyTorch: 1.13.1
5
+ - GPU Enabled: True
6
+ - Numpy: 1.21.5
7
+ - Gym: 0.21.0
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: DQN
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -143.52 +/- 17.92
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **DQN** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **DQN** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVMAAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmRxbi5wb2xpY2llc5SMCURRTlBvbGljeZSTlC4=", "__module__": "stable_baselines3.dqn.policies", "__doc__": "\n Policy class with Q-Value Net and target net for DQN\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function DQNPolicy.__init__ at 0x000001C455B78040>", "_build": "<function DQNPolicy._build at 0x000001C455B780D0>", "make_q_net": "<function DQNPolicy.make_q_net at 0x000001C455B78160>", "forward": "<function DQNPolicy.forward at 0x000001C455B781F0>", "_predict": "<function DQNPolicy._predict at 0x000001C455B78280>", "_get_constructor_parameters": "<function DQNPolicy._get_constructor_parameters at 0x000001C455B78310>", "set_training_mode": "<function DQNPolicy.set_training_mode at 0x000001C455B783A0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001C455B77840>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAiXa1hBJtBHgFFIfKccw9ElRHmjE9aTkNSSD8ErchmFVgKE1Atia+VZLBBFzf6onIdY/TkIWmnjBv+lE/U9XBsHq4yYs6V6Kvn3MDzDTl1hVVpavrAq3dxNMSKn9AmMgI4SA3zK6CWsr+aagUqx3bZYNgVDDFsqF/ZLaUX7OI/9+yug7JJhOS6B8fc2T87Uqt6p186QONUtPqkijKbwrQumy8vW8yUFs1oB08dFl/oNgy56wSW31CtiICQrIYoGk1i81GWgwahFvpaobTVN0FOwf9hHCLuqHXLnooe8MQh4FioB1Rxhs5AQgx3vwzbWD/+OKinBQtEZlTDJS09YqlfhbBfAuwhasgK7ppesLs3JbWPbgFUJ7ptPBiRIYVxPbzrGK6yJbM1fRxCm+BUl+eoxQojFWFrxuyqutQFez8I0PJeIyWxfk3aXxHQdXwK7+IH+C/o1MUBcjSpn21TvoSl6ZTJ0ANLDRwSEx8+v9QoUCPdnmZquzu7QnIeOk0p8AHknE3LmThAVi2/Oum8zQObZRg1VLNRbaJNNFxNMb+kgvJ6L9QMTsskb+CxVQCGhwKsO305XAbDZBnEOUFf52fAb/fkgCXvX7Yjg5mvuuY8J0MJdtwRuy++P0h1tJbQa1Tqa6ePkSKL+4wh7Q0Yn6HUqGIrPfv7WidU6bYgGxubLJf/mds6bWQUXgqD5agCV9ir2RXHkKOm35iKOJ/qZ1P51MD1vLx8YI13NEG6iymeLc8NcjiLBbA6E+fnbdQv6KId8FuYjZR9wHeyN0c2DW+X00g0v4ccqvqYhcd2+mFFB38xiCBX0jfbubiRGBcPnZimld2+yHsu+lieez+sE9ALAXk252pL/H1sIzNwJUcg3jsPwYxQk1oO7EcCdmNpLhBO0cw4S5c7R50eHcO+LkClgHW2bolUvvzCNdJW+2eXl07xpF5Q34oGYVBc5Mvbm34kaFgi+o0g2twGnEVRpvx9pZST17VifDUd4miIb4DxrYLbV8LnxWtrQsF4Ddet7HME535OzT5AWwUbWPw3P0Eh3Dnd/HheGKHPrq/tjavuFDW/JZCM2jdmB4tn4so4huDobdpYgT0f18VaLSUaTRD70WKaOE6E5XeD2cztCdhBtPbZUpmJjFkHhG0D8NxKIpdAui/73UFd6tkdaBC0r+g3SEAS6Y1zjs7s6HgSlLLDYjl+UAMHuR2sV5D/AIqdlSx8zvie2Mpbor3H8Sx7nUUkJ/7O6XNm8LqcEMzA1aSNTSFW82UZR3OgM0XytGpcnEdexoPPfDhhTVFrOxsW5qjGD/omvG9Z/zdc6J9WagiS7hRcUfA6QkDm7il8lzRC4EB/T0/SOjEc029kY/nRpretUQ59ascWdk+TXaRMUWcrb6P+b76uFyxOPk1NbnEe62wfaekqb5cjwW4Q/3Bu7cGaWZHxaQ+51FVln7McicxPce+A7kr/rtZoNRt5bPU6sdn1j1UPFxGgbNK7HOvp151mZlw+XGIPTW5QuM2rSOSv3YkGkyloZuKm+LL2P1bJVH4wEJTpWe+5BFItfoPWtogykYUp1amYNBVqU0k1DwIuXiw3+/7DU9dexqfh3tSINdu2HVcoFE1gJFeCmjs/B7cnVzaLeWIGaEXmB7mG/45k8hNNYXNHp6xKnY6Gb7UV3KuHqH32jxnOjK3YPMG+9N9Ies0N8iMxFtJhU0F3w3qyK1tO5O3xjLGxIBEuKRytUkhJPoTY8WuoQ9ZTY4OZU9iq8hxUI9YKkVIZZPXNpNBsi4IIVnRBcJ/RU1gi37LNbHr5cf9tZH+bcoXuH4HqGnjOM4ldi4e2hMhkPZ+kBPG1xfkU+rF0gb5z6WOHBJ6u7Vy5fnfA65INMEo34XUzBtyWD6zYD62KyA2eBu0/MhU37EPqYMBK6yBdggUNLzakiuQEjZf6I9hEMcdoquOHbLdcdgxWrRO50ttSe8Kjk9iaW2M4lZBFPNMbnnk1eztC9wzMEW+REUiyxTtHjYlt580w+OBbXB9q0e82QBgDWRkRmFP4HrYFI6e4wW22jXf67yzP+EX2XNj8gopsQrdieI7fAZ9Q6AMKwaKnKYrIm9/yO9kE+l9O2QYxcGtbEsXBrV1grreP1OZ2raSH0Ndrr9IlEsXQcqwcPIQcnk5yq+UmMlX3eiq6YfGJUgkKq+n2VBVd/Y6j1wgKU5wNT3OHDP2QeenSv8Ybl06N5GnyuQF1Qm9Bhy9bOIwdo84mgn6Z3zf5zTUAsW8DPezJPT2IEmFHkmeFEAdbRekfvRMlpANXQsXBOHWeMfXmqglmtqZUpzi+bdl3N2S5lyCw4ieSNOqbQQP3jnjlwRuxbAUk7h1zU2VryUxcyfjTR9sRQTXc9zVm/0GupKfsqWtDs8IDVVN7S1uggFw8l6yTtErktrDZMiVzSPV2nfyea3zFmMyDMKKAI+gByJ20/vEWn8CLXA0KqUrNKi0yTY/ST1zptIPo2NSDDRlv/pKDQKcrXbnl0cJm9TX645hDTCP+Az1SqTYmMSzaZ5+YZEq4ONMojnR+zjMXImkG2xqBOaBLPrcsaMi3VdQS4IXk28WoIuSyZoxFMdnCO6L1Y9aq6VHimcj59zZDl6r6yrUzYxBi5SVGSS/n8vsgo2cv2pufbHZAQSCAMSeRHv0ZTP8qRPZT/6KDxlgu23Wmig7ZkH/Q0rEOE2qYjN37ZMF0iNDmJHCgaq+Lh86euDpbkH4Qda6Dp06RMzN/FixFfT6lbIvd3UElTlIUnj1y4rsnuCM7W0UXc/1s4a5sEwBQP3DIcisRmzvMKjLqJMwBbLFPRajl53ICldGfoa2jHIrMnegb6IdAbD8x/iFfcyXHuinSSm6On5lrbuY7Yjl0yt+fJhipU/mif5oXrHNc+AyFKQyBYr3zyrncQFowQcGdx79VN+TYbkF1TQV9IcSHO6laNXbHKCsQxoKS2qTOSLQwML/2yzEVukRW4RKpo2ixZiKwmnJHkGGorITVDuwDrsWlhdYliIdRS1E2ErwEEa4jX/oMUNHMR/LQ5ICt4SCHXgygUUu/nhkAJ4tKB2sVGfN37rpkc1PFGJNsYAXGxdKdNRejILSBTvlk9V1T77onBRWfNrycsDUPvmgu0ScNkPT//jhz+FXb/9NXrr4hmN/nNad4iX3KAXZdxlTfsP1T4nSI0fweIRTYhP4/ElybJdXm7y8LMuXmyXG5vJkmXSMdnUSGYMMd5fMcolDyc0xKK4VM92GWHy3zb72Ho0TSlXwWfdpvNRnSrOH/PNeKs3Qea69T7D/W8SQnnM0STA1xqVH77fYnBYzi4xfjCFiJtxlxA6YG2kZsYzklGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLWXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 200000, "_total_timesteps": 200000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1677686639737637000, "learning_rate": 0.001, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVewIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEtDOlxVc2Vyc1xDaGVuXGFuYWNvbmRhM1xsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UaA11Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoF2gOjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoGIwHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/UGJN0vGp/IWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAACazrL2o7Mo/RO6UuuL3CD3UosK8lrsLPAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_episode_num": 738, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI5ggZyLMTVMCUhpRSlIwBbJRN6AOMAXSUR0BksvcL0BfbdX2UKGgGaAloD0MIOUTcnEpuSsCUhpRSlGgVTeYCaBZHQGTseoUBXCF1fZQoaAZoCWgPQwj/IJIhx2hiwJSGlFKUaBVN6ANoFkdAZUqEjgQ6IXV9lChoBmgJaA9DCCcyc4FLpWDAlIaUUpRoFU3oA2gWR0Bllg+bExZddX2UKGgGaAloD0MIVfmekQhwX0CUhpRSlGgVTWsDaBZHQGXYIUzsQd11fZQoaAZoCWgPQwgFiIIZU+VYwJSGlFKUaBVN6ANoFkdAZiVhDPWxyHV9lChoBmgJaA9DCF4vTRFgjmTAlIaUUpRoFU0uAWgWR0BmOIhW5paidX2UKGgGaAloD0MIOSuiJvqSUsCUhpRSlGgVTegDaBZHQGZ+RD1Gsmx1fZQoaAZoCWgPQwjRrdf0IEVlwJSGlFKUaBVN6ANoFkdAZteL4vexfXV9lChoBmgJaA9DCGNH41C/YFHAlIaUUpRoFU24AWgWR0Bm85SiudPMdX2UKGgGaAloD0MIBOj3/ZtyY8CUhpRSlGgVTegDaBZHQGdLqkuYhMd1fZQoaAZoCWgPQwj9+bZgqThZwJSGlFKUaBVN6ANoFkdAZ6ZHHWBjF3V9lChoBmgJaA9DCKFHjJ5bcDzAlIaUUpRoFU3oA2gWR0Bn9wbhm5DrdX2UKGgGaAloD0MIDw2LUdcqHcCUhpRSlGgVTXQBaBZHQGgPZtelbeN1fZQoaAZoCWgPQwh2xYzwdj1jwJSGlFKUaBVN6ANoFkdAaFydBjWkJ3V9lChoBmgJaA9DCFwFMdA1RWZAlIaUUpRoFU3mAmgWR0BokOac7QsxdX2UKGgGaAloD0MIRpbMsTylYMCUhpRSlGgVTegDaBZHQGjYmm1pj+d1fZQoaAZoCWgPQwj1vYbguGRlwJSGlFKUaBVN6ANoFkdAaUDsJpnHvXV9lChoBmgJaA9DCJRQ+kJIV2XAlIaUUpRoFU3oA2gWR0BpkdnqVyFPdX2UKGgGaAloD0MIFlCopw9EZsCUhpRSlGgVTegDaBZHQGnkS6cy31B1fZQoaAZoCWgPQwgPYJFfP+tfwJSGlFKUaBVN6ANoFkdAajG6EJ0GNnV9lChoBmgJaA9DCGZLVkW4OWLAlIaUUpRoFU3oA2gWR0Bqf29DhLoPdX2UKGgGaAloD0MI4A7UKY/oRMCUhpRSlGgVTYYCaBZHQGqzqxs2vSt1fZQoaAZoCWgPQwhkBFQ4gllhwJSGlFKUaBVN6ANoFkdAaw43Td+G5HV9lChoBmgJaA9DCMsPXOUJOV7AlIaUUpRoFU3oA2gWR0BrY6k0rK/3dX2UKGgGaAloD0MISBgGLLnTX8CUhpRSlGgVTegDaBZHQGuuwNsnAqN1fZQoaAZoCWgPQwhPzeUGQ2pbwJSGlFKUaBVN6ANoFkdAa/sPVd5Y5nV9lChoBmgJaA9DCBrDnKDNf2LAlIaUUpRoFU3oA2gWR0BsR4AMlTm5dX2UKGgGaAloD0MI3CvzVl1xWcCUhpRSlGgVTegDaBZHQGyKixNZeRh1fZQoaAZoCWgPQwg5YFeTpwVkwJSGlFKUaBVN6ANoFkdAbNsdz4k/r3V9lChoBmgJaA9DCPzG155ZxV/AlIaUUpRoFU3oA2gWR0BtKYN/e+EidX2UKGgGaAloD0MISSwpd5/yWcCUhpRSlGgVTegDaBZHQG2I75M10kp1fZQoaAZoCWgPQwjIt3cNejpkwJSGlFKUaBVN6ANoFkdAbdiLJjlPrXV9lChoBmgJaA9DCN9qnbicp2fAlIaUUpRoFU3oA2gWR0BuLa/yoXKsdX2UKGgGaAloD0MIY5tUNFaFYcCUhpRSlGgVTegDaBZHQG5x8Wj45951fZQoaAZoCWgPQwgOoUrNHqNdwJSGlFKUaBVN6ANoFkdAbr6t1ZDArXV9lChoBmgJaA9DCMhhMH8FPWDAlIaUUpRoFU3oA2gWR0BvC6YRdyDJdX2UKGgGaAloD0MIDeTZ5VvdYcCUhpRSlGgVTegDaBZHQG9k96Tnq3V1fZQoaAZoCWgPQwhvgQTFDw9hwJSGlFKUaBVN6ANoFkdAb7zmEGqxT3V9lChoBmgJaA9DCMeEmEsqQGPAlIaUUpRoFU3oA2gWR0BwBWHuZ1FIdX2UKGgGaAloD0MICcOAJdfsYcCUhpRSlGgVTegDaBZHQHAtlR+BpYd1fZQoaAZoCWgPQwi1UgjkEpdewJSGlFKUaBVN6ANoFkdAcFLCPIXCTHV9lChoBmgJaA9DCOdTxyqlyWPAlIaUUpRoFU3oA2gWR0Bwf+1stTUBdX2UKGgGaAloD0MI2jhiLT49YsCUhpRSlGgVTegDaBZHQHClZd0JWvN1fZQoaAZoCWgPQwjKMVnc/ytmwJSGlFKUaBVN6ANoFkdAcM9W7voeP3V9lChoBmgJaA9DCCbkg57NH1vAlIaUUpRoFU3oA2gWR0Bw8D+hoM8YdX2UKGgGaAloD0MIB0Dc1SugZMCUhpRSlGgVTegDaBZHQHEXVFpfx+d1fZQoaAZoCWgPQwjkafmBq8RcwJSGlFKUaBVN6ANoFkdAcT7CDmKZUnV9lChoBmgJaA9DCPFjzF1LjGTAlIaUUpRoFU3oA2gWR0BxZtnAZbY9dX2UKGgGaAloD0MIMgIqHEFLXMCUhpRSlGgVTegDaBZHQHGNAt8NQTF1fZQoaAZoCWgPQwjZsnxdBrVjwJSGlFKUaBVN6ANoFkdAcboTtb9qDnV9lChoBmgJaA9DCDWzlgLShljAlIaUUpRoFU3oA2gWR0Bx4QAaNuLrdX2UKGgGaAloD0MIe2gfK3i3ZMCUhpRSlGgVTegDaBZHQHIHZZ8rqdJ1fZQoaAZoCWgPQwgsgZTYtaliwJSGlFKUaBVN6ANoFkdAcilQY1pCbHV9lChoBmgJaA9DCLvSMlJvgWTAlIaUUpRoFU3oA2gWR0ByTbl3hXKbdX2UKGgGaAloD0MId9fZkH85UsCUhpRSlGgVTegDaBZHQHJzpY1YQrd1fZQoaAZoCWgPQwiYbhKDwO9gwJSGlFKUaBVN6ANoFkdAcp3fCAMDwHV9lChoBmgJaA9DCDYhrTHov1rAlIaUUpRoFU3oA2gWR0Byw2qtHQQddX2UKGgGaAloD0MIK91dZ0PyX8CUhpRSlGgVTegDaBZHQHLk8BMi8nN1fZQoaAZoCWgPQwjjx5i7lm9kwJSGlFKUaBVN6ANoFkdAcwhclPacqnV9lChoBmgJaA9DCAAbECEuU2HAlIaUUpRoFU3oA2gWR0BzKrpD/lySdX2UKGgGaAloD0MI8Q2Fz1ZIZsCUhpRSlGgVTegDaBZHQHNS4cinpB51fZQoaAZoCWgPQwguVP61vEJgwJSGlFKUaBVN6ANoFkdAc3sUKiO/+XV9lChoBmgJaA9DCHYWvVMB32DAlIaUUpRoFU3oA2gWR0BzoTRrrPdEdX2UKGgGaAloD0MIMUPjiaBcZMCUhpRSlGgVTegDaBZHQHPLVs54nnd1fZQoaAZoCWgPQwiERrBxfeJkwJSGlFKUaBVN6ANoFkdAc+6jnmq5snV9lChoBmgJaA9DCGU4ns8A72LAlIaUUpRoFU3oA2gWR0B0EkVtXPqtdX2UKGgGaAloD0MIdcx5xr4TY8CUhpRSlGgVTegDaBZHQHQ2FX7tRel1fZQoaAZoCWgPQwit9xvtuIZiwJSGlFKUaBVN6ANoFkdAdFyvgFX7tXV9lChoBmgJaA9DCDD0iNFzYGrAlIaUUpRoFU3oA2gWR0B0iFHavicYdX2UKGgGaAloD0MIOs0C7Q5HaMCUhpRSlGgVTegDaBZHQHSxFzuF6Ax1fZQoaAZoCWgPQwjT3XU2ZDdhwJSGlFKUaBVN6ANoFkdAdNIJmNBF/nV9lChoBmgJaA9DCJNuS+SC917AlIaUUpRoFU3oA2gWR0B09QA93bEhdX2UKGgGaAloD0MIRfEqa5vNa8CUhpRSlGgVTegDaBZHQHUdYK6WgOB1fZQoaAZoCWgPQwj0bFZ9LkxhwJSGlFKUaBVN6ANoFkdAdT97qIJqqXV9lChoBmgJaA9DCBx8YTLVtGjAlIaUUpRoFU0EAWgWR0B1RwAq/dqMdX2UKGgGaAloD0MIHm/yW/T7YsCUhpRSlGgVTegDaBZHQHVzSsOoYN11fZQoaAZoCWgPQwiIR+LlabVjwJSGlFKUaBVNWAFoFkdAdX26MR6F/XV9lChoBmgJaA9DCBzr4jYaYWTAlIaUUpRoFU3oA2gWR0B1pC8PFvQ4dX2UKGgGaAloD0MIcY+lD93NY8CUhpRSlGgVTTECaBZHQHW2r6P8yet1fZQoaAZoCWgPQwinIhXGFnxfwJSGlFKUaBVN6ANoFkdAddnnDBMzuXV9lChoBmgJaA9DCN3T1R0LjmTAlIaUUpRoFU3oA2gWR0B1+cxQBPsSdX2UKGgGaAloD0MIoUliSbmtYMCUhpRSlGgVTegDaBZHQHYat74SHuZ1fZQoaAZoCWgPQwjX3NH/cpxSwJSGlFKUaBVLzmgWR0B2IJLQHAymdX2UKGgGaAloD0MIhC12+yyAbMCUhpRSlGgVTSYDaBZHQHY7LCJoCdV1fZQoaAZoCWgPQwhzol2FlDhrwJSGlFKUaBVNAQNoFkdAdlMqt5le4XV9lChoBmgJaA9DCKdAZmfRCGTAlIaUUpRoFU3oA2gWR0B2eX5uZThpdX2UKGgGaAloD0MIZ341B4hrYsCUhpRSlGgVTegDaBZHQHaefh2nsLR1fZQoaAZoCWgPQwhmLQWkff5kwJSGlFKUaBVLzWgWR0B2pK16Vt4zdX2UKGgGaAloD0MIzy9K0N/1Y8CUhpRSlGgVTegDaBZHQHbKM8cMmWt1fZQoaAZoCWgPQwjy64fYYCxlwJSGlFKUaBVL12gWR0B20KtNi6QOdX2UKGgGaAloD0MIAp60cFnfY8CUhpRSlGgVS/xoFkdAdtgduHerMnV9lChoBmgJaA9DCHgmNEkswGTAlIaUUpRoFU3oA2gWR0B2/0lLOAy3dX2UKGgGaAloD0MIgsr49xlPYsCUhpRSlGgVTegDaBZHQHcqTQiRnvl1fZQoaAZoCWgPQwhnYU87fBlnwJSGlFKUaBVN6ANoFkdAd1eujRD1G3V9lChoBmgJaA9DCHnNqzqrpmXAlIaUUpRoFU3oA2gWR0B3fdgy/KyOdX2UKGgGaAloD0MIX+0ozlEvWcCUhpRSlGgVTegDaBZHQHejvWpZOi51fZQoaAZoCWgPQwih9IWQ82VewJSGlFKUaBVN6ANoFkdAd8x5Ec81XXV9lChoBmgJaA9DCOrqjsW2qGXAlIaUUpRoFU0BAWgWR0B31FC5VfeDdX2UKGgGaAloD0MIcCL6tXVzZMCUhpRSlGgVTegDaBZHQHf3MZccENh1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 37500, "buffer_size": 1000000, "batch_size": 32, "learning_starts": 50000, "tau": 1.0, "gamma": 0.99, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNQAAAAAAAACMIHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5idWZmZXJzlIwMUmVwbGF5QnVmZmVylJOULg==", "__module__": "stable_baselines3.common.buffers", "__doc__": "\n Replay buffer used in off-policy algorithms like SAC/TD3.\n\n :param buffer_size: Max number of element in the buffer\n :param observation_space: Observation space\n :param action_space: Action space\n :param device: PyTorch device\n :param n_envs: Number of parallel environments\n :param optimize_memory_usage: Enable a memory efficient variant\n of the replay buffer which reduces by almost a factor two the memory used,\n at a cost of more complexity.\n See https://github.com/DLR-RM/stable-baselines3/issues/37#issuecomment-637501195\n and https://github.com/DLR-RM/stable-baselines3/pull/28#issuecomment-637559274\n Cannot be used in combination with handle_timeout_termination.\n :param handle_timeout_termination: Handle timeout termination (due to timelimit)\n separately and treat the task as infinite horizon task.\n https://github.com/DLR-RM/stable-baselines3/issues/284\n ", "__init__": "<function ReplayBuffer.__init__ at 0x000001C455B3B790>", "add": "<function ReplayBuffer.add at 0x000001C455B3B820>", "sample": "<function ReplayBuffer.sample at 0x000001C455B3B8B0>", "_get_samples": "<function ReplayBuffer._get_samples at 0x000001C455B3B940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000001C455B3C940>"}, "replay_buffer_kwargs": {}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLBGgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "actor": null, "use_sde_at_warmup": false, "exploration_initial_eps": 1.0, "exploration_final_eps": 0.05, "exploration_fraction": 0.1, "target_update_interval": 10000, "_n_calls": 200000, "max_grad_norm": 10, "exploration_rate": 0.05, "exploration_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVHwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwRLE0MsZAF8ABgAiAFrBHIQiABTAIgCZAF8ABgAiACIAhgAFACIARsAFwBTAGQAUwCUTksBhpQpjBJwcm9ncmVzc19yZW1haW5pbmeUhZSMS0M6XFVzZXJzXENoZW5cYW5hY29uZGEzXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS3BDBgABDAEEApSMA2VuZJSMDGVuZF9mcmFjdGlvbpSMBXN0YXJ0lIeUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDXVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUaB0pUpRoHSlSlIeUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgjfZR9lChoGWgOjAxfX3F1YWxuYW1lX1+UjBtnZXRfbGluZWFyX2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZQoaAuMCGJ1aWx0aW5zlIwFZmxvYXSUk5SMBnJldHVybpRoL3WMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgajAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz+pmZmZmZmahZRSlGg3Rz+5mZmZmZmahZRSlGg3Rz/wAAAAAAAAhZRSlIeUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "batch_norm_stats": [], "batch_norm_stats_target": [], "system_info": {"OS": "Windows-10-10.0.22621-SP0 10.0.22621", "Python": "3.9.13", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1", "GPU Enabled": "True", "Numpy": "1.21.5", "Gym": "0.21.0"}}
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": -143.51571277751427, "std_reward": 17.917075807970136, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-02T10:09:40.073361"}