--- library_name: peft license: other base_model: Qwen/Qwen1.5-0.5B tags: - axolotl - generated_from_trainer model-index: - name: a30c98f1-5377-4fe4-bf1b-66b3d754b9b2 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: Qwen/Qwen1.5-0.5B bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 08def8d176b3ee4d_train_data.json ds_type: json format: custom path: /workspace/input_data/08def8d176b3ee4d_train_data.json type: field_input: tools field_instruction: query field_output: answers format: '{instruction} {input}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/a30c98f1-5377-4fe4-bf1b-66b3d754b9b2 hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 4224 micro_batch_size: 4 mlflow_experiment_name: /tmp/08def8d176b3ee4d_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 1024 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.04 wandb_entity: null wandb_mode: online wandb_name: 7a7bc575-869c-40c2-9816-fca44c877c0b wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 7a7bc575-869c-40c2-9816-fca44c877c0b warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# a30c98f1-5377-4fe4-bf1b-66b3d754b9b2 This model is a fine-tuned version of [Qwen/Qwen1.5-0.5B](https://huggingface.co/Qwen/Qwen1.5-0.5B) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0594 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 2917 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.9008 | 0.0007 | 1 | 0.9272 | | 0.1566 | 0.0686 | 100 | 0.0968 | | 0.0716 | 0.1372 | 200 | 0.0869 | | 0.081 | 0.2057 | 300 | 0.0793 | | 0.1297 | 0.2743 | 400 | 0.0786 | | 0.0308 | 0.3429 | 500 | 0.0740 | | 0.075 | 0.4115 | 600 | 0.0740 | | 0.0821 | 0.4801 | 700 | 0.0723 | | 0.0985 | 0.5486 | 800 | 0.0694 | | 0.051 | 0.6172 | 900 | 0.0675 | | 0.0472 | 0.6858 | 1000 | 0.0666 | | 0.0509 | 0.7544 | 1100 | 0.0658 | | 0.1134 | 0.8230 | 1200 | 0.0651 | | 0.073 | 0.8916 | 1300 | 0.0636 | | 0.1127 | 0.9601 | 1400 | 0.0636 | | 0.0228 | 1.0287 | 1500 | 0.0637 | | 0.0262 | 1.0973 | 1600 | 0.0634 | | 0.0448 | 1.1659 | 1700 | 0.0629 | | 0.037 | 1.2345 | 1800 | 0.0625 | | 0.1208 | 1.3030 | 1900 | 0.0620 | | 0.0368 | 1.3716 | 2000 | 0.0619 | | 0.0951 | 1.4402 | 2100 | 0.0612 | | 0.0582 | 1.5088 | 2200 | 0.0604 | | 0.0438 | 1.5774 | 2300 | 0.0602 | | 0.033 | 1.6459 | 2400 | 0.0598 | | 0.0626 | 1.7145 | 2500 | 0.0597 | | 0.0106 | 1.7831 | 2600 | 0.0597 | | 0.0312 | 1.8517 | 2700 | 0.0594 | | 0.0382 | 1.9203 | 2800 | 0.0595 | | 0.0622 | 1.9889 | 2900 | 0.0594 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1