--- library_name: peft license: apache-2.0 base_model: unsloth/codellama-7b tags: - axolotl - generated_from_trainer model-index: - name: 90d5b725-9dfb-405c-86fa-326350c1c1ee results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: unsloth/codellama-7b bf16: true chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 2ad46d0313986df7_train_data.json ds_type: json format: custom path: /workspace/input_data/2ad46d0313986df7_train_data.json type: field_instruction: prompt field_output: chosen format: '{instruction}' no_input_format: '{instruction}' system_format: '{system}' system_prompt: '' debug: null device_map: ? '' : 0,1,2,3,4,5,6,7 early_stopping_patience: 2 eval_max_new_tokens: 128 eval_steps: 100 eval_table_size: null flash_attention: true gradient_accumulation_steps: 8 gradient_checkpointing: true group_by_length: false hub_model_id: Alphatao/90d5b725-9dfb-405c-86fa-326350c1c1ee hub_repo: null hub_strategy: null hub_token: null learning_rate: 0.0002 load_best_model_at_end: true load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 32 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 16 lora_target_linear: true lora_target_modules: - q_proj - k_proj - v_proj - o_proj - down_proj - up_proj lr_scheduler: cosine max_grad_norm: 1.0 max_steps: 1092 micro_batch_size: 4 mlflow_experiment_name: /tmp/2ad46d0313986df7_train_data.json model_type: AutoModelForCausalLM num_epochs: 2 optimizer: adamw_bnb_8bit output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 100 sequence_len: 2048 strict: false tf32: true tokenizer_type: AutoTokenizer train_on_inputs: false trust_remote_code: true val_set_size: 0.03354781570171966 wandb_entity: null wandb_mode: online wandb_name: d47f6846-6c00-4ad8-aca7-52fa04750bcb wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: d47f6846-6c00-4ad8-aca7-52fa04750bcb warmup_steps: 10 weight_decay: 0.0 xformers_attention: null ```

# 90d5b725-9dfb-405c-86fa-326350c1c1ee This model is a fine-tuned version of [unsloth/codellama-7b](https://huggingface.co/unsloth/codellama-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6689 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 1092 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.6172 | 0.0002 | 1 | 2.5837 | | 1.5458 | 0.0222 | 100 | 1.7610 | | 1.6923 | 0.0444 | 200 | 1.7392 | | 1.6922 | 0.0666 | 300 | 1.7222 | | 1.8 | 0.0889 | 400 | 1.7104 | | 1.7277 | 0.1111 | 500 | 1.6967 | | 1.7427 | 0.1333 | 600 | 1.6879 | | 1.8182 | 0.1555 | 700 | 1.6800 | | 1.6517 | 0.1777 | 800 | 1.6742 | | 1.7055 | 0.1999 | 900 | 1.6706 | | 1.646 | 0.2222 | 1000 | 1.6689 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1